已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.
答案:2 悬赏:80 手机版
解决时间 2022-01-01 05:16
- 提问者网友:棒棒糖
- 2021-12-31 12:48
已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.
最佳答案
- 五星知识达人网友:神鬼未生
- 2021-12-31 13:06
证明:∵AB∥CD(已知),
∴∠AEF=∠CFM(两直线平行,同位角相等).
又∵∠PEA=∠QFC(已知),
∴∠AEF+∠PEA=∠CFM+∠QFC(等式性质).
即∠PEM=∠QFM.
∴PE∥QF(同位角相等,两直线平行).
∴∠EPM=∠FQM(两直线平行,同位角相等).解析分析:根据题意证得∠AEF=∠CFM,再由∠AEP=∠CFQ,可得出∠PEM=∠QFM,PE∥QF,即能得出∠EPM=∠FQM.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
∴∠AEF=∠CFM(两直线平行,同位角相等).
又∵∠PEA=∠QFC(已知),
∴∠AEF+∠PEA=∠CFM+∠QFC(等式性质).
即∠PEM=∠QFM.
∴PE∥QF(同位角相等,两直线平行).
∴∠EPM=∠FQM(两直线平行,同位角相等).解析分析:根据题意证得∠AEF=∠CFM,再由∠AEP=∠CFQ,可得出∠PEM=∠QFM,PE∥QF,即能得出∠EPM=∠FQM.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
全部回答
- 1楼网友:爱难随人意
- 2021-12-31 14:33
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯