如图,已知平面直角坐标系中,菱形ABCD的两个顶点C,D的坐标 分别为(4,0),(0,3).现有两
答案:2 悬赏:0 手机版
解决时间 2021-02-09 12:37
- 提问者网友:ミ烙印ゝ
- 2021-02-08 15:45
如图,已知平面直角坐标系中,菱形ABCD的两个顶点C,D的坐标 分别为(4,0),(0,3).现有两
最佳答案
- 五星知识达人网友:野味小生
- 2021-02-08 16:36
1.OC = OA = 4,OB = OC = 3AD = BC = AB = 5点Q在线段BA上时,BC/2 = 5/2 ≤ t ≤ (5+5)/2 = 5t秒时,AP = tP的横坐标 = -(AO - APcos∠OAD) = -(4 - t*OA/AD) = -(4 - 4t/5) = 4t/5 - 4P的纵坐标 = -APsin∠OAD = -3t/5P(4t/5 - 4,-3t/5)t秒时,AQ = 10 - 2tQ的纵坐标 = AQsin∠BAO = 6(5-t)/5 = 6 - 6t/5Q的横坐标 = -(AO - AQcos∠BAO) = 4 - 8t/5Q(4 - 8t/5,6(5-t)/5)设PQ与x轴交于R(r,0)PQ的方程:(y + 3t/5)/(6 - 6t/5 + 3t/5) = (x - 4t/5 + 4)/(4 - 8t/5 - 4t/5 + 4)令y = 0,r = (-16t² + 100t - 200)/(50 - 5t)AR = 4 + r = 16t(5 - t)/(50 - 5t)三角形APQ的面积S = 三角形APR的面积 + 三角形AQR的面积= (1/2)AR*|P的纵坐标| + (1/2)AR*|Q的纵坐标|= (1/2)AR*(3t/5 + 6 - 6t/5)= (1/2)[16t(5 - t)/(50 - 5t)](6 - 3t/5)= 24t(5 - t)/25t = 5-t即t = 5/2时,S最大,= 62.用1中的结果,t = 4,P(-4/5,-12/5)BC的方程:x/4 + y/3 = 1,3x + 4y - 12 = 0P与BC的距离d = |-12/5 - 48/5 - 12|/5 = 24/5 > AP = 4,Q在AB上以P为圆心,半径为4的圆的方程:(x + 4/5)² + (y + 12/5)² = 16与AB的方程(-x/4 + y/3 = 1,3x - 4y + 12 = 0)联立,得25x²/16 + 97x/10 + 69/5 = 0(x + 4)(25x/16 + 69/20) = 0x = -4 (点P)x = -276/125Q( -276/125,168/125)AQ² = (-4 + 276/125)² + (168/125 - 0)² = (280/125)²AQ = 280/125 = 10 - 4kk = 97/50天哪,真辛苦.
全部回答
- 1楼网友:鸠书
- 2021-02-08 17:22
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯