平均数、众数、中位数怎么使用?
答案:5 悬赏:80 手机版
解决时间 2021-02-04 23:27
- 提问者网友:你给我的爱
- 2021-02-04 04:27
平均数、众数、中位数怎么使用?
最佳答案
- 五星知识达人网友:街头电车
- 2021-02-04 04:35
平均数、众数、中位数这三个统计量的各自特点是:
平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数则着眼于对各数据出现的次数的考察,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。因此某些数据的变动对它的中位数影响不大。
在同一组数据中,众数、中位数和平均数也各有其特性:
(1)中位数与平均数是唯一存在的,而众数是不唯一的;
(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。
具体来说,平均数、众数和中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会引起平均数的相应变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关;中位数则仅与数据的排列位置有关,某些数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。
一般来说,平均数、中位数和钟书都是一组数据的代表,分别代表这组数据的“一般水平”、“中等水平”和“多数水平”。平均数涉及所有的数据,中位数和众数只涉及部分数据。它们互相之间可以相等也可以不相等,没有固定的大小关系。
其实,它们三者有关联也有区别。在一组数据中出现次数最多的数就是这组数据众数,众数和平均数一样,也是描述一组数据集中趋势的统计量,但它和平均数有以下两点不同:一是平均数只是一个“虚拟”的数,即一组数据的和除以该组数据的个数所得的商,而众数不是“虚拟”的数,是一组数据中出现次数最多的那个数据,是这组数据中真实存在的一个数据;二是平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数大小的改变,而众数则仅与一组数据的出现的次数有关,某些数据的变动对众数没有影响,所以在一组数据中,如果个别数据变动较大,但某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”比较合适。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。平均数主要反映一组数据的一般水平,中位数则更好地反映了一组数据的中等水平。它和平均数有以下不同:一是平均数只是一个“虚拟”的数,而中位数并不完全是“虚拟”数,当一组数据有奇数个时,它就是该组数据顺序排列后中间的那个数据,是这组数据中真实存在的一个数据;二是平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数大小的改变,而中位数则仅与一组数据的排列位置有关,某些数据的变动对中位数没有影响,所以当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数则着眼于对各数据出现的次数的考察,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。因此某些数据的变动对它的中位数影响不大。
在同一组数据中,众数、中位数和平均数也各有其特性:
(1)中位数与平均数是唯一存在的,而众数是不唯一的;
(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。
具体来说,平均数、众数和中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会引起平均数的相应变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关;中位数则仅与数据的排列位置有关,某些数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。
一般来说,平均数、中位数和钟书都是一组数据的代表,分别代表这组数据的“一般水平”、“中等水平”和“多数水平”。平均数涉及所有的数据,中位数和众数只涉及部分数据。它们互相之间可以相等也可以不相等,没有固定的大小关系。
其实,它们三者有关联也有区别。在一组数据中出现次数最多的数就是这组数据众数,众数和平均数一样,也是描述一组数据集中趋势的统计量,但它和平均数有以下两点不同:一是平均数只是一个“虚拟”的数,即一组数据的和除以该组数据的个数所得的商,而众数不是“虚拟”的数,是一组数据中出现次数最多的那个数据,是这组数据中真实存在的一个数据;二是平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数大小的改变,而众数则仅与一组数据的出现的次数有关,某些数据的变动对众数没有影响,所以在一组数据中,如果个别数据变动较大,但某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”比较合适。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。平均数主要反映一组数据的一般水平,中位数则更好地反映了一组数据的中等水平。它和平均数有以下不同:一是平均数只是一个“虚拟”的数,而中位数并不完全是“虚拟”数,当一组数据有奇数个时,它就是该组数据顺序排列后中间的那个数据,是这组数据中真实存在的一个数据;二是平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数大小的改变,而中位数则仅与一组数据的排列位置有关,某些数据的变动对中位数没有影响,所以当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
全部回答
- 1楼网友:轻熟杀无赦
- 2021-02-04 06:01
平均数 :所有数字和 除以有好多个数 中位数:所有数的和除以2
- 2楼网友:舍身薄凉客
- 2021-02-04 05:47
具体来说:
1.平均数:平均数的计算中要用到每一个数据,因而它反映的是一组数据的总体水平,选择特征数表示一组数据的集中趋势时,我们用得最多的是平均数,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,能够最为充分地反映这组数据所包含的信息,在进行统计推断时有重要的作用,但容易受到极端数据的影响。在大多数情况下人们喜欢使用平均数这一指标来代表一批数据或用它来反映大量事物的整体水平。
例如:用平均分反映一个班级学生的某次测验结果;一个班级学生的平均身高、平均体重等。
2.中位数:中位数是一组数据的中间量,代表了中等水平。中位数在一组数据的数值排序中处于中间位置,在统计学分析中扮演着“分水岭”的角色,由中位数可以对事物的大体趋势进行判断和掌控。在个别的数据过大或过小的情况下,“平均数”代表数据整体水平是有局限性的,也就是说个别极端数据是会对平均数产生较大的影响的,而对中位数的影响则不那么明显。所以,这时用中位数来代表整体数据更合适。即:如果在一组相差较大的数据中,用中位数作为表示这组数据特征的统计量往往更有意义。
例如:甲乙两学生射击成绩如下:甲:10环、10环、9环、3环。乙:10环、5环、3环、2环。请你试一试如何评价他们的射击成绩。这里甲有2个10环,1个9环,一个意外的3环,对于这个3环,可以看作是一个奇异值或极端数据,如用平均数来评价甲的总成绩就不能客观反映甲的射击环数主要是9环与10环的事实。由于数据中有一个极低数值出现,故计算平均数时就一下子把分数降下来了。采用中位数9.5环较合适。乙的射击成绩中5环及以下有3次,还有一次是意外的10环,对这组数据,如计算平均数后是5环,但用5环来代表乙的成绩在一定程度上偏高估计了乙的总体成绩,所以采用中位数4环比较合宜。
3.众数代表的是一组数据的多数水平,若一组数据中众数的频数比较大,并且与其他数据的频数相差较大时,我们一般选用众数。众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。众数与各个数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
总之,平均数、中位数和众数是从不同的角度向我们提供了一组数据的面貌,选用它们表示一组数据的集中趋势时,一般是根据实际情况遵循“多数原则”,即哪种特征数能代表这组数据的绝大多数,就选用那个特征数。例如:你认为哪个数据代表公司员工工资的一般水平比较合适?
甲公司:
员 工员工A员工B员工C员工D员工E员工F员工G
月工资(元)1810178017401700169016701660
乙公司:
员 工员工A员工B员工C员工D员工E员工F员工G
月工资(元)4300170016801660158015101510
丙公司:
员 工员工A员工B员工C员工D员工E员工F员工G
月工资(元)4500170016501650165016501650
上例,根据数据的特征,很明显甲公司选用平均数1721,乙公司选用中位数1660,丙公司选用众数1650,代表公司员工工资的一般水平比较合适。
关于平均数、中位数、众数的适用范围可以总结为:
根据实际分析数据,比较接近选平均数,相差较大看中位数,频数较大使用用众数。
- 3楼网友:撞了怀
- 2021-02-04 05:38
众数----一组数据中出现次数最多的那个数据,叫做这组数据的众数(mode).
众数着眼于对各数据出现的次数的考察,是一组数据中的原数据,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;注意:一组数据中的众数有时不只一个,如数据2、3、-1、2、l、3中,2和3都出现了2次,它们都是这组数据的众数.
中位数----把n个数据按大小顺序排列,处于最中间位置的一个数据(或)叫做这组数据的中位数(median).中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。因此某些数据的变动对它的中位数影响不大。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势
注意:(1)求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以.
(2)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.
在同一组数据中,众数、中位数和平均数也各有其特性:
(1)中位数与平均数是唯一存在的,而众数是不唯一的;
(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。
如,在数据6、6、6、6、6中,其众数、中位数、平均数都是6。
手表序号
1
2
3
4
5
6
7
8
9
10
日走时误差(秒)
-2
0
2
1
-3
-1
0
2
4
-3
例如:检验某厂生产的手表质量时,检查人员随机抽取了10只手表,在下表中记下了每只手表的走时误差(正数表示比标准时间快,负数表示比标准时间慢),你认为用这10只手表误差的平均数来衡量这10只手表的精度合适吗
解:[(-2)+0+1+(-3)+(-1)+0+2+4+(-3)+2]÷10=0÷10=0
从这个平均数看,仿佛这10只手表走时非常精度,没有误差,但实际上有8只手表存在着误差,使用平均数掩盖了个别手表存在误差的事实,所以使用中位数更能反映问题
又如:为筹备班级里的联谊会,班长对全班同学爱吃哪几种水果作了民意调查最终买什么水果,请大家思考一下,该问题应由调查数据中的平均数,中位数还是众数决定呢毫无疑问,当然由众数决定,因为各种水果喜好人数的中位数或平均都没有什么意义.
- 4楼网友:duile
- 2021-02-04 05:11
卖东西 用众数,求成绩之比用平均数,看一组的水平用中位数 采纳吧 谢谢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯