在等比数列an中,若a6-a5=324,a2-a1=4,则sn=?
答案:1 悬赏:20 手机版
解决时间 2021-07-19 04:17
- 提问者网友:精神病院里
- 2021-07-18 03:50
具体步骤
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-07-18 05:07
a6/a5=a2/a1=q
a6=q*a5 a2=q*a1
a6-a5=q*a5 -a5 =(q-1)*a5=324 一式
a2-a1=q*a1 -a1 =(q-1)*a1=4 二式
用一式除以二式:a5/a1=81
根据等比数列的性质 a5/a1=q^4=81 所以q=3
q=3带入二式,算得 a1=2
所以Sn=[a1(1-q^n)]/(1-q)
=[2*(1-3^n)]/(-2)
=3^n - 1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯