永发信息网

关于函数的零点问题应该怎么做?

答案:2  悬赏:0  手机版
解决时间 2021-03-28 08:13
关于函数的零点问题应该怎么做?
最佳答案
解:
f(x)=0在区间(a,b)内有一解,说明f(a)×f(b)<0

零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ  证明:不妨设f(a)<0,f(b)>0.令
  E={x|f(x)<0,x∈[a,b]}.
  由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,
  存在ξ=supE∈[a,b].
  下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,
  (i)若f(ξ)>0,则ξ∈[a,b).由函数连续的局部保号性知
  存在x1∈(ξ,b):f(x1)<0→存在x1∈E:x1>supE,
  这与supE为E的上界矛盾;
  (ii)若f(ξ)<0,则ξ∈(a,b].仍由函数连续的局部保号性知
  存在δ>0,对任意x∈(ξ-δ,ξ):f(x)>0→存在δ>0,对任意x∈E:x<ξ-δ,
  这又与supE为E的最小上界矛盾。
  综合(i)(ii),即推得f(ξ)=0。
  我们还可以利用闭区间套定理来证明零点定理。
全部回答
考虑:零点大概位置、区间内单调性、结合图形、再比较大小 。
二楼:f(x)=0在区间(a,b)内有一解,说明f(a)×f(b)<0,此结论不成立。
很简单,如果抛物线与x轴有两交点, x1=1,x2=2,那么f(0)*f(3)<0能成立么????显然不成立。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
如何从宝元鞋厂进到阿迪耐克新百伦的鞋
患人心成语疯狂猜成语
天然食醋化妆品韩国107品牌有几种氨基酸成分
与琼有关的成语
阿比甲当嘎是什么意思
小车本科目四怎么快速记住谢谢大神
4.5吨以下,车长6米以内的卡车哪种牌子的好,并
回转机构中,极限力矩限制器的作用与工作原理
发动机水温风扇高风和低风是指什么
描写太阳的谜语谜底是太阳。
我表姐来自于南京他学习很好英语
求问一部很小的时候少儿频道看过的动画片
哪些工作适合低学历 十大低学历冷门高薪职业
三个卫生间 一个厨房 用多大的热水器
我的世界和方舟生存进化哪个好玩?
推荐资讯
"加厚版"英文怎么说
请问:仪征九鼎香和扬州的九鼎香是一家么?都
dota2验证电子邮箱地址出现问题如何解决?
自由幻想手游有人玩的么
Photoshop cs6的滤镜里边为什么没有艺术效果
WORD中语句错误自动检测怎样设置?
为什么分手后女友不把我拉黑啊!
前女友忽然把15年朋友圈全部删了,是什么意思
看图说话,一个小朋友扶着一个盲人阿姨过马路
我是WIN7的系统,我家电脑老是提示NVIDIA GeF
吴哥之美 中 蒋勋提到的ming是谁
经济管理系有什么专业
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?