已知x/2=y/3,用两种方法计算(x^2-y^2)/(x^2-2xy-3y^2)的值
有过程,谢谢!
已知x/2=y/3,用两种方法计算(x^2-y^2)/(x^2-2xy-3y^2)的值
有过程,谢谢!
①令x/2=y/3=k
则:
x=2k,y=3k
(x^2-y^2)/(x^2-2xy-3y^2)=(4k^2-9k^2)/(4k^2-12k^2-27k^2)=-5/(-35)=1/7
②x/2=y/3
所以
x=2y/3
(x^2-y^2)/(x^2-2xy-3y^2)=(4y^2/9-y^2)/(4y^2/9-4y^2/3-3y^2)=-5/9 / -35/9=1/7
<一>
∵ x/2=Y/3
∴x/y=2/3
(把要求的式子的每一项都除以y^2)
原式=【(x/y)^2 -1】/[(x/y)^2 -2(x/y)-3]
=【(2/3)^2 -1】/[(2/3)^2 -2(2/3)-3]
=1/7
<二>
∵x/2=y/3
∴x=2y/3
∴(x^2-y^2)/(x^2-2xy-3y^2)=(4y^2/9-y^2)/(4y^2/9-4y^2/3-3y^2)=-5/9 / -35/9=1/7
(x^2-y^2)/(x^2-2xy-3y^2)
=(x+y)(x-y)/(x+y)(x-3y)
=x-y/x-3y
=1/7
分解因式有(X-Y)*(X+Y)/(X-3Y)*(X+Y)
所以原式=(X-Y)/(X-3Y)而X=2Y/3 带入原式,那么就等于1/7
1、设x/2=y/3=k
x=2k
y=3k
然后代入化简即可。
(1)∵x/2=y/3=k
∴x=2k,y=3k
∴原式=(4k²-9k²)/(4k²-2x2kx3k-3x9k²)
=-5k²/-35k²
=1/7
(2)∵x/2=y/3
∴x=2y/3代入
原式=[(4y²/9-y²)]/[4y²/9-2x2y/3xy-3y²]
=1/7