设P是菱形ABCD外一点,PD垂直平面ABCD,且角BAD=60°,BC=PD=6,E为PB的中点,
答案:2 悬赏:20 手机版
解决时间 2021-02-06 08:18
- 提问者网友:我一贱你就笑
- 2021-02-06 04:06
设P是菱形ABCD外一点,PD垂直平面ABCD,且角BAD=60°,BC=PD=6,E为PB的中点,
最佳答案
- 五星知识达人网友:洎扰庸人
- 2021-02-06 04:19
正切值=2/√3作个图清楚点,菱形ABCD,PD垂直ABCD,E为PB中点,O为对角线AC,BD交点,连接EA,EC,EO,过B做BF垂直EC于F,连接OF.角BAD=60,可得AB=BC=CD=DA=PD=DB=6PD垂直于ABCD,所以,EO也垂直于ABCD,即面EAC垂直于ABCD.OB=3,OC=3√3,OE=3,EC=BC=6,EB=3√2BF=3√7/2,OF=3√3/2且OF垂直于CE.(OF垂直CE:过F作FG垂直CE于F,通过勾股定理证明OF=FG,所以OF垂直CE)因为面EAC垂直于面ABCD,OB垂直OE,OB垂直AC,所以OB垂直面EAC.所以,OB垂直OF,则,角OFB=二面角B-CE-A所以,tan角OFB=OB/OF=3/(3√3/2)=2/√3=2√3/3(符号不太会打,看着是有点累.)
全部回答
- 1楼网友:孤独的牧羊人
- 2021-02-06 05:29
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯