【卡方分布的自由度】在卡方分布中的自由度怎么确定?求数理逻辑证明.
答案:2 悬赏:60 手机版
解决时间 2021-02-15 01:50
- 提问者网友:情歌越听越心酸
- 2021-02-14 02:18
【卡方分布的自由度】在卡方分布中的自由度怎么确定?求数理逻辑证明.
最佳答案
- 五星知识达人网友:鸽屿
- 2021-02-14 02:26
【答案】 一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有n个独立的随机变量,和由它们所构成的k个样本统计量,则这个表达式的自由度为n-k.比如中包含ξ1,ξ2,…,ξn这n个独立的随机变量,同时还有它们的平均数ξ这一统计量,因此自由度为n-1.
证明:设k1ξ1+k2ξ2+…+knξn=0.这是一个含有n个相对独立变量的式子.则其中任意一个ξi=-1/ki[k1ξ1+k2ξ2+…+k(i-1)ξ(i-1)+k(i+1)ξ(i+1)+…+knξn],(1≤i≤n).显然ξi由另外n-1个变量决定,所以自由度为n-1.
证明:设k1ξ1+k2ξ2+…+knξn=0.这是一个含有n个相对独立变量的式子.则其中任意一个ξi=-1/ki[k1ξ1+k2ξ2+…+k(i-1)ξ(i-1)+k(i+1)ξ(i+1)+…+knξn],(1≤i≤n).显然ξi由另外n-1个变量决定,所以自由度为n-1.
全部回答
- 1楼网友:从此江山别
- 2021-02-14 03:42
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯