怎样判断一个数列的极限是否存在
答案:2 悬赏:70 手机版
解决时间 2021-03-18 22:57
- 提问者网友:暗中人
- 2021-03-18 08:54
怎样判断一个数列的极限是否存在
最佳答案
- 五星知识达人网友:西风乍起
- 2021-03-18 09:22
给出通项公式的前提下,可以通过放缩法利用夹逼定理判定极限存在.或者利用单调有界原理,如果数列从某项开始单增有上界,或单减有下界,该数列有极限.
全部回答
- 1楼网友:迟山
- 2021-03-18 09:37
1.概念法:存在一个正数ε,当n>n时,|an-m| < ε恒成立
2.定理法:
(1)单调且有界数列必存在极限;
(2)夹逼准则;
(3)数学归纳法(有可能和(1)、(2)结合使用)
3.函数法:将数列的通项公式构成成函数,利用对函数求极限来判定数列的极限,要和夹逼准则或者概念法一起使用
1,证明数列{xn=(n-1)/(n+1)}极限存在并求出其极限
证明:
∵1 -1/(1+1/n) = 1- n/(n+1)< 1-2/(n+1) = xn < (n-1)/n = 1-1/n
即:1 -1/(1+1/n) < xn < (n-1)/n = 1-1/n
已知:当n无穷大时:lim 1/n =0
∴lim[1 -1/(1+1/n)]=1
lim[1-1/n]=1
根据夹逼准侧:xn极限存在,且limxn=1
2.略,方法同1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯