如图,已知直线AB∥CD∥EF,∠POQ=90°,它的顶点O在CD上,两边分别与AB、EF相交于点P,点Q,射线OC始终在∠POQ的内部.
(1)求∠1+∠2的度数;
(2)直接写出∠3与∠4的数量关系:______.
(3)若∠POQ的度数为α,且0°<α<180°,其余条件不变,则∠3与∠4的数量关系为______.(用含α的式子表示)
如图,已知直线AB∥CD∥EF,∠POQ=90°,它的顶点O在CD上,两边分别与AB、EF相交于点P,点Q,射线OC始终在∠POQ的内部.(1)求∠1+∠2的度数;(
答案:2 悬赏:40 手机版
解决时间 2021-12-21 19:30
- 提问者网友:雨不眠的下
- 2021-12-21 09:30
最佳答案
- 五星知识达人网友:琴狂剑也妄
- 2022-01-22 06:04
解:(1)∵AB∥CD,
∴∠1=∠POC,
∵CD∥EF,
∴∠2=∠QOC,
∵∠POQ=∠POC+∠QOC=90°,
∴∠1+∠2=90°;
(2)∵∠1+∠3=180°,∠4+∠2=180°,
∴∠1+∠3+∠4+∠2=360°,
又∵∠1+∠2=90°,
∴∠3+∠4=270°;
(3))∵AB∥CD,
∴∠1=∠POC,
∵CD∥EF,
∴∠2=∠QOC,
∵∠POQ=∠POC+∠QOC=α,
∴∠1+∠2=α;
(2)∵∠1+∠3=180°,∠4+∠2=180°,
∴∠1+∠3+∠4+∠2=360°,
又∵∠1+∠2=α,
∴∠3+∠4=360°-α.
故
∴∠1=∠POC,
∵CD∥EF,
∴∠2=∠QOC,
∵∠POQ=∠POC+∠QOC=90°,
∴∠1+∠2=90°;
(2)∵∠1+∠3=180°,∠4+∠2=180°,
∴∠1+∠3+∠4+∠2=360°,
又∵∠1+∠2=90°,
∴∠3+∠4=270°;
(3))∵AB∥CD,
∴∠1=∠POC,
∵CD∥EF,
∴∠2=∠QOC,
∵∠POQ=∠POC+∠QOC=α,
∴∠1+∠2=α;
(2)∵∠1+∠3=180°,∠4+∠2=180°,
∴∠1+∠3+∠4+∠2=360°,
又∵∠1+∠2=α,
∴∠3+∠4=360°-α.
故
全部回答
- 1楼网友:七十二街
- 2022-01-22 06:22
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯