高二向量与椭圆综合题
- 提问者网友:遮云壑
- 2021-04-26 04:34
- 五星知识达人网友:拜訪者
- 2021-04-26 05:11
1)x²/(5m/2)+y²/(3m/2)=1
a²=5m/2,b²=3m/2,∴c²=a²-b²=m
F(√m,0), 而直线AB斜率为1,则AB:y=x-√m
设A(x1,y1),B(x2,y2)
y=x-√m代入椭圆方程 x²/(5m/2)+(x-√m)²/(3m/2)=1
整理得 8x²-10√mx-5m/2=0
∴x1+x2=5√m/4,x1x2=-5m/16
∴y1+y2=(x1-√m)+(x2-√m)=(x1+x2)-2√m=-3√m/4
∴M(5√m/8,-3√m/8)
∴直线OM:y=-3x/5
代入椭圆方程 x²/(5m/2)+(9x²/25)/(3m/2)=1
解得 x=5√m/4,y=-3x/5=-3√m/4, N(5√m/4,-3√m/4)
向量OA+向量OB=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)=(5√m/4,-3√m/4)
向量ON=(5√m/4,-3√m/4)
∴向量OA+向量OB=向量ON
2)y1y2=(x1-√m)(x2-√m)=x1x2-√m(x1+x2)+m=-5m/16-√m×(5√m/4)+m=-9m/16
∴向量OA*向量OB=(x1,y1)(x2,y2)=x1x2+y1y2=-5m/16-9m/16=-7m/8
- 1楼网友:野慌
- 2021-04-26 05:48
c=m,点F坐标(m,o),线AB方程:y=x-m,代入椭圆方程
6x^2+10(x-m)^2=15m^2,
16x^2-20mx-5m^2=0,
故M点横坐标为5m/8,
因为x1^2/5+y1^2/3=x2^2/5+y2^2/3,从而3(x1+x2)(x1-x2)=5(y1+y2)(y2-y1), -3·5m/4=5(y1+y2)
M(5m/8,-3m/8)
又直线3x+5y=0交椭圆于N(5m/4, -3m/4),故M为ON中点, OANB为平行四边形
所以OA+OB=ON
OA·OB=x1x2+y1y2=x1x2+9/25 x1x2=34/25 ·(-5m^2/16)=-17m^2/40