如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
答案:2 悬赏:30 手机版
解决时间 2021-03-28 08:11
- 提问者网友:相思似海深
- 2021-03-28 01:41
如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
最佳答案
- 五星知识达人网友:廢物販賣機
- 2020-03-21 09:28
解:∵AB=AC,AE平分∠BAC,
∴AE⊥BC(等腰三角形三线合一),
∵∠ADC=125°,
∴∠CDE=55°,
∴∠DCE=90°-∠CDE=35°,
又∵CD平分∠ACB,
∴∠ACB=2∠DCE=70°.
又∵AB=AC,
∴∠B=∠ACB=70°,
∴∠BAC=180-(∠B+∠ACB)=40°.解析分析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.点评:本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.
∴AE⊥BC(等腰三角形三线合一),
∵∠ADC=125°,
∴∠CDE=55°,
∴∠DCE=90°-∠CDE=35°,
又∵CD平分∠ACB,
∴∠ACB=2∠DCE=70°.
又∵AB=AC,
∴∠B=∠ACB=70°,
∴∠BAC=180-(∠B+∠ACB)=40°.解析分析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.点评:本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.
全部回答
- 1楼网友:鱼芗
- 2021-03-12 21:45
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯