求函数y=sin(-3x+2)的递减区间与当y最大时x的最小正值
答案:2 悬赏:0 手机版
解决时间 2021-11-13 03:09
- 提问者网友:我们很暧昧
- 2021-11-12 14:59
求函数y=sin(-3x+2)的递减区间与当y最大时x的最小正值
最佳答案
- 五星知识达人网友:野慌
- 2021-11-12 16:10
因为sin(-x)单调递减时,有2kπ-π/2≤x≤2kπ+π/2,k∈Z,
所以sin(-3x+2)单调递减时,2kπ-π/2≤-3x+2≤2kπ+π/2,k∈Z.
亲,解出x得单调减区间.
-3x+2=2kπ+π/2,k∈Z时,ymax=1.
-3x=2kπ+π/2-2,k∈Z,
3x=2kπ-π/2+2,k∈Z,
x=1/3•(2kπ-π/2+2),k∈Z,
k=0,x最小正值2/3-π/6.
所以sin(-3x+2)单调递减时,2kπ-π/2≤-3x+2≤2kπ+π/2,k∈Z.
亲,解出x得单调减区间.
-3x+2=2kπ+π/2,k∈Z时,ymax=1.
-3x=2kπ+π/2-2,k∈Z,
3x=2kπ-π/2+2,k∈Z,
x=1/3•(2kπ-π/2+2),k∈Z,
k=0,x最小正值2/3-π/6.
全部回答
- 1楼网友:污到你湿
- 2021-11-12 16:35
答案:递减区间为x∈(2kπ/3+2/3-π/6,2kπ/3+2/3+π/6),k∈Z;最小正值为x=2/3-π/6
y=sin(-3x+2)
=-sin(3x-2)
=sin(3x-2+π)
对于函数y=sint,t∈(-π/2+2kπ,π/2+2kπ)为增函数,t∈(π/2+2kπ,3π/2+2kπ)为减函数
3x+π-2∈(π/2+2kπ,3π/2+2kπ)
3x∈(π/2+2kπ+2-π,3π/2+2kπ+2-π)
3x∈(2kπ+2-π/2,2kπ+2+π/2)
x∈(2kπ/3+2/3-π/6,2kπ/3+2/3+π/6)
对于函数y=sin,t=π/2+2kπ时y取最大值
∴3x-2+π=π/2+2kπ
3x=2kπ-π/2+2
x=2kπ/3-π/6+2/3≥0,k为整数
k≥0
最小正值就是x=2/3-π/6追答满意请速采
y=sin(-3x+2)
=-sin(3x-2)
=sin(3x-2+π)
对于函数y=sint,t∈(-π/2+2kπ,π/2+2kπ)为增函数,t∈(π/2+2kπ,3π/2+2kπ)为减函数
3x+π-2∈(π/2+2kπ,3π/2+2kπ)
3x∈(π/2+2kπ+2-π,3π/2+2kπ+2-π)
3x∈(2kπ+2-π/2,2kπ+2+π/2)
x∈(2kπ/3+2/3-π/6,2kπ/3+2/3+π/6)
对于函数y=sin,t=π/2+2kπ时y取最大值
∴3x-2+π=π/2+2kπ
3x=2kπ-π/2+2
x=2kπ/3-π/6+2/3≥0,k为整数
k≥0
最小正值就是x=2/3-π/6追答满意请速采
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯