证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
答案:2 悬赏:50 手机版
解决时间 2021-02-06 17:06
- 提问者网友:浪荡绅士
- 2021-02-06 01:00
证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-02-06 02:28
6x^5+11x^4+5x^3+5x^2-x-6
=6x^5+6x^3+11x^4-x^3+5x^2-x-6
=6x^3(x^2+1)+11x^4+11x^2-x^3-6x^2-x-6
=6x^3(x^2+1)+11x^2(x^2+1)-(x^3+x)-(6x^2+6)
=6x^3(x^2+1)+11x^2(x^2+1)-x(x^2+1)-6(x^2+1)
所以,得证。
=6x^5+6x^3+11x^4-x^3+5x^2-x-6
=6x^3(x^2+1)+11x^4+11x^2-x^3-6x^2-x-6
=6x^3(x^2+1)+11x^2(x^2+1)-(x^3+x)-(6x^2+6)
=6x^3(x^2+1)+11x^2(x^2+1)-x(x^2+1)-6(x^2+1)
所以,得证。
全部回答
- 1楼网友:我住北渡口
- 2021-02-06 03:05
也就是是否存在x^2=-1
加入存在6x^5+11x^4+5x^3+5x^2-x-6=6x*(x^2)^2+11(x^2)^2+5x(x^2)+5x^2-x-6
=6x-11-5x-5-x-6=0
故在村x^2=-1使f(x)=6x^5+11x^4+5x^3+5x^2-x-6=0
故6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除
加入存在6x^5+11x^4+5x^3+5x^2-x-6=6x*(x^2)^2+11(x^2)^2+5x(x^2)+5x^2-x-6
=6x-11-5x-5-x-6=0
故在村x^2=-1使f(x)=6x^5+11x^4+5x^3+5x^2-x-6=0
故6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯