如图1,△ABC中,BD⊥AC于D,CE⊥AB于E.
(1)猜测∠1与∠2的关系,并说明理由.
(2)如果∠A是钝角,如图2,(1)中的结论是否还成立?
如图1,△ABC中,BD⊥AC于D,CE⊥AB于E.(1)猜测∠1与∠2的关系,并说明理由.(2)如果∠A是钝角,如图2,(1)中的结论是否还成立?
答案:2 悬赏:20 手机版
解决时间 2021-03-25 11:25
- 提问者网友:最爱你的唇
- 2021-03-25 06:06
最佳答案
- 五星知识达人网友:酒安江南
- 2020-05-26 11:43
解:(1)∠1=∠2.
∵BD⊥AC,CE⊥AB,
∴△ABD和△BCE是直角三角形,
∴∠1+∠B=90°,∠2+∠B=90°,
∴∠1=∠2;
(2)结论仍然成立.
理由如下:∵BD⊥AC,CE⊥AB,
∴∠D=∠E=90°,
∴∠1+∠4=90°,∠2+∠3=90°,
∵∠3=∠4(对顶角相等),
∴∠1=∠2.解析分析:(1)根据垂直的定义可得△ABD和△BCE是直角三角形,再根据直角三角形两锐角互余可得∠1+∠B=90°,∠2+∠B=90°,从而得解;
(2)根据垂直的定义可得∠D=∠E=90°,然后求出∠1+∠4=90°,∠2+∠3=90°,再根据∠3、∠4是对顶角解答即可.点评:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键.
∵BD⊥AC,CE⊥AB,
∴△ABD和△BCE是直角三角形,
∴∠1+∠B=90°,∠2+∠B=90°,
∴∠1=∠2;
(2)结论仍然成立.
理由如下:∵BD⊥AC,CE⊥AB,
∴∠D=∠E=90°,
∴∠1+∠4=90°,∠2+∠3=90°,
∵∠3=∠4(对顶角相等),
∴∠1=∠2.解析分析:(1)根据垂直的定义可得△ABD和△BCE是直角三角形,再根据直角三角形两锐角互余可得∠1+∠B=90°,∠2+∠B=90°,从而得解;
(2)根据垂直的定义可得∠D=∠E=90°,然后求出∠1+∠4=90°,∠2+∠3=90°,再根据∠3、∠4是对顶角解答即可.点评:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键.
全部回答
- 1楼网友:天凉才是好个秋
- 2021-02-25 10:08
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯