分形几何学的由来
答案:1 悬赏:0 手机版
解决时间 2021-03-31 13:53
- 提问者网友:我的未来我做主
- 2021-03-31 00:25
分形几何学的由来
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-03-31 01:26
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小事物的几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这就是“无标度性”的问题。
湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。
客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这就是“无标度性”的问题。
湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯