自然常数e是怎么来的,谁给讲讲
答案:3 悬赏:10 手机版
解决时间 2021-02-22 13:21
- 提问者网友:嘚啵嘚啵
- 2021-02-21 18:45
自然常数e是怎么来的,谁给讲讲
最佳答案
- 五星知识达人网友:平生事
- 2021-02-21 19:44
关于 e 的来源的计算有多种。下面是比较常见的两种情况:
一、
e = (1 + 1/∞)^∞
二、
e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + ... ... + 1/n! + ... ...
一、
e = (1 + 1/∞)^∞
二、
e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + ... ... + 1/n! + ... ...
全部回答
- 1楼网友:蕴藏春秋
- 2021-02-21 21:43
神奇的自然对数底e
让我们先来看一个约公元前1700年巴比伦人提出的利息问题:以20%的年息贷钱给人,何时连本带利翻一番?问题相当于求解指数方程
$1.2^x=2$
这类复利问题我们今天每一个储蓄的人都还会遇到。如果设本金为1,则历年本利和就是这样一个等比数列:
1.2,1.22,1.23,1.24,1.25,1.27,…。
上述等比数列乃是一年复利一次的情况下得到的历年本利和,如果每半年复利一次,那么第一年的本利和为
$(1+frac{0.2}{2})^2=1.21$
比一年复利一次多了点;如果一个季度复利一次,那么第一年的本利和为
$(1+frac{0.2}{4})^4=1.21550625$
比半年复利一次又多了点;如果每月复利一次,那么第一年的本利和为
$(1+frac{0.2}{12})^12=1.21939108490523$
比一季度复利一次又多了点;如果每天复利一次,那么第一年的本利和为
$(1+frac{0.2}{365})^365=1.22133585825177$
比每月复利一次又多了点。如果每时、每分、每秒复利,第一年的本利和分别为
1.2213999696、1.2214027117、1.2214027574。
从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于
$e^0.2=1.2214027581$
它的底数是
$e=lim_{n->oo}(1+1/n)^n=2.7182818284...$
它就是自然对数的底。18世纪,瑞士大数学家欧拉首次用字母e来表示它,一直沿用至今。
我们不知道巴比伦人是否考虑过连续复利的问题,但肯定的是,他们并不知道e这个数。直到1683年,瑞士著名数学家雅各·伯努利(Jacob Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以$(1+1/n)^n$当$n->00$时的极限来解决,但伯努利只估计出这个极限在2和3之间。欧拉则利用无穷级数
$1+1/1+1/(1*2)+1/(1*2*3))+1/(1*2*3*4)+...$
首次算出e的小数点后18位的近似值,还利用连分数证明了e是个无理数。1873年,法国著名数学家埃尔米特(C. Hermite, 1822~1901)证明了e是一个超越数。
除了复利问题,考古学也和e攀上了亲戚关系。考古学上常用的鉴定年代方法是1948年美国芝加哥大学的Willard Libby设计出来的碳-14定年法。放射性碳-14因空气中的氮原子受宇宙线轰击而形成,但它不稳定,会丢掉两个中子,衰变成碳-12。碳-14不断产生又不断衰变,结果,它在空气中的含量近似保持不变,就像一个水池,同时以同样的速度进水和出水,池内含水量不变一样。活着的动植物通过呼吸,体内自然也含有碳-14;一禽一兽、一草一木,每单位重量所含碳-14总是相同的。但是,一旦动物死亡,呼吸停止,不再从空气中吸入碳-14,而原来留在体内的碳-14则继续衰变,经过5730年( 即半衰期),碳-14的量剩下原来的一半,经过11460年,剩下原来的四分之一。这里,经过的时间和剩余的质量之间的关系是$M(t)=M_0 e^{-lambda(t-t_0)}$,其中衰变常数$lambda~~1.2*10^-4 $。如果测出考古发掘物(如兽骨、木炭、贝壳等)的碳-14含量M(t),利用上述公式即可断定其存在的年代。
与上述炭-14定年法类似,鉴定一幅画的真伪,也得和e打交道。因为任何一幅画的颜料中都含有铅-210和镭-226,因此利用两者的放射性,可以大致判别画的年代,从而让赝品“原形毕露”。
这是粘别人的,希望能帮助你
让我们先来看一个约公元前1700年巴比伦人提出的利息问题:以20%的年息贷钱给人,何时连本带利翻一番?问题相当于求解指数方程
$1.2^x=2$
这类复利问题我们今天每一个储蓄的人都还会遇到。如果设本金为1,则历年本利和就是这样一个等比数列:
1.2,1.22,1.23,1.24,1.25,1.27,…。
上述等比数列乃是一年复利一次的情况下得到的历年本利和,如果每半年复利一次,那么第一年的本利和为
$(1+frac{0.2}{2})^2=1.21$
比一年复利一次多了点;如果一个季度复利一次,那么第一年的本利和为
$(1+frac{0.2}{4})^4=1.21550625$
比半年复利一次又多了点;如果每月复利一次,那么第一年的本利和为
$(1+frac{0.2}{12})^12=1.21939108490523$
比一季度复利一次又多了点;如果每天复利一次,那么第一年的本利和为
$(1+frac{0.2}{365})^365=1.22133585825177$
比每月复利一次又多了点。如果每时、每分、每秒复利,第一年的本利和分别为
1.2213999696、1.2214027117、1.2214027574。
从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于
$e^0.2=1.2214027581$
它的底数是
$e=lim_{n->oo}(1+1/n)^n=2.7182818284...$
它就是自然对数的底。18世纪,瑞士大数学家欧拉首次用字母e来表示它,一直沿用至今。
我们不知道巴比伦人是否考虑过连续复利的问题,但肯定的是,他们并不知道e这个数。直到1683年,瑞士著名数学家雅各·伯努利(Jacob Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以$(1+1/n)^n$当$n->00$时的极限来解决,但伯努利只估计出这个极限在2和3之间。欧拉则利用无穷级数
$1+1/1+1/(1*2)+1/(1*2*3))+1/(1*2*3*4)+...$
首次算出e的小数点后18位的近似值,还利用连分数证明了e是个无理数。1873年,法国著名数学家埃尔米特(C. Hermite, 1822~1901)证明了e是一个超越数。
除了复利问题,考古学也和e攀上了亲戚关系。考古学上常用的鉴定年代方法是1948年美国芝加哥大学的Willard Libby设计出来的碳-14定年法。放射性碳-14因空气中的氮原子受宇宙线轰击而形成,但它不稳定,会丢掉两个中子,衰变成碳-12。碳-14不断产生又不断衰变,结果,它在空气中的含量近似保持不变,就像一个水池,同时以同样的速度进水和出水,池内含水量不变一样。活着的动植物通过呼吸,体内自然也含有碳-14;一禽一兽、一草一木,每单位重量所含碳-14总是相同的。但是,一旦动物死亡,呼吸停止,不再从空气中吸入碳-14,而原来留在体内的碳-14则继续衰变,经过5730年( 即半衰期),碳-14的量剩下原来的一半,经过11460年,剩下原来的四分之一。这里,经过的时间和剩余的质量之间的关系是$M(t)=M_0 e^{-lambda(t-t_0)}$,其中衰变常数$lambda~~1.2*10^-4 $。如果测出考古发掘物(如兽骨、木炭、贝壳等)的碳-14含量M(t),利用上述公式即可断定其存在的年代。
与上述炭-14定年法类似,鉴定一幅画的真伪,也得和e打交道。因为任何一幅画的颜料中都含有铅-210和镭-226,因此利用两者的放射性,可以大致判别画的年代,从而让赝品“原形毕露”。
这是粘别人的,希望能帮助你
- 2楼网友:洎扰庸人
- 2021-02-21 20:41
可以证明x→∞
(1+1/x)^x递增且有界
所以lim(x→∞)(1+1/x)^x存在
吧这个极限就命名为e
(1+1/x)^x递增且有界
所以lim(x→∞)(1+1/x)^x存在
吧这个极限就命名为e
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯