广义积分的敛散性
答案:1 悬赏:30 手机版
解决时间 2021-03-19 19:31
- 提问者网友:疯孩纸
- 2021-03-18 19:31
广义积分的敛散性
最佳答案
- 五星知识达人网友:狂恋
- 2021-03-18 20:03
问题一:讨论反常积分的敛散性 答:
我前几天回答过类似题目,不过那个更深一些。
zhidao.baidu.com/question/202061499.html
作不定积分:
∫dx/(x(lnx)^k)
当k=1时,上式=ln(lnx)+C,当x->贰+∞发散;
当k≠1时,不定积分则
=1/(-k+1)*(lnx)^(-k+1) + C
当k+∞时发散。
当k>1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0
所以定积分∫(2到+∞) dx/[x(lnx)^k]
=0-1/(-k+1)*(ln2)^(-k+1)
=[(ln2)^(1-k)]/(k-1)
即当k1时收敛。问题二:这个题怎么做,关于高数的。 反常积分(后面的截图),当k为何值时,该反常积分的取值最小? 答:
作不定积分:
∫dx/(x(lnx)^k)
当k=1时,上式=ln(lnx)+C发散
当k≠1时,不定积分则
=1/(-k+1)*(lnx)^(-k+1) + C
当k1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0
所以定积分∫(2到+∞) dx/[x(lnx)^k]
=0-1/(-k+1)*(ln2)^(-k+1)
=[(ln2)^(1-k)]/(k-1)
设函数f(k)=[(ln2)^(1-k)]/(k-1),f'(k)=[-(k-1)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)]/(k-1)^2
当f'(k)=0时,[-(k-1)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)]/(k-1)^2=0
即(1-k)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)=0
(1-k)ln(ln2)*(ln2)^(1-k)=(ln2)^(1-k)
(1-k)ln(ln2)=1
k=1-1/ln(ln2)
因为0=ln11。
当k>1-1/ln(ln2)时,f'(k)>0,当1问题三:判断下列广义积分的敛散性(有步骤) 3个广义积分都是收敛的(1)(2)结果为1(3)结果为2过程如下图:问题四:广义积分的敛散性 问题五:广义积分敛散性 问题六:求解广义积分的敛散性,要详细过程。 因此,收敛
我前几天回答过类似题目,不过那个更深一些。
zhidao.baidu.com/question/202061499.html
作不定积分:
∫dx/(x(lnx)^k)
当k=1时,上式=ln(lnx)+C,当x->贰+∞发散;
当k≠1时,不定积分则
=1/(-k+1)*(lnx)^(-k+1) + C
当k+∞时发散。
当k>1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0
所以定积分∫(2到+∞) dx/[x(lnx)^k]
=0-1/(-k+1)*(ln2)^(-k+1)
=[(ln2)^(1-k)]/(k-1)
即当k1时收敛。问题二:这个题怎么做,关于高数的。 反常积分(后面的截图),当k为何值时,该反常积分的取值最小? 答:
作不定积分:
∫dx/(x(lnx)^k)
当k=1时,上式=ln(lnx)+C发散
当k≠1时,不定积分则
=1/(-k+1)*(lnx)^(-k+1) + C
当k1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0
所以定积分∫(2到+∞) dx/[x(lnx)^k]
=0-1/(-k+1)*(ln2)^(-k+1)
=[(ln2)^(1-k)]/(k-1)
设函数f(k)=[(ln2)^(1-k)]/(k-1),f'(k)=[-(k-1)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)]/(k-1)^2
当f'(k)=0时,[-(k-1)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)]/(k-1)^2=0
即(1-k)ln(ln2)*(ln2)^(1-k)-(ln2)^(1-k)=0
(1-k)ln(ln2)*(ln2)^(1-k)=(ln2)^(1-k)
(1-k)ln(ln2)=1
k=1-1/ln(ln2)
因为0=ln11。
当k>1-1/ln(ln2)时,f'(k)>0,当1问题三:判断下列广义积分的敛散性(有步骤) 3个广义积分都是收敛的(1)(2)结果为1(3)结果为2过程如下图:问题四:广义积分的敛散性 问题五:广义积分敛散性 问题六:求解广义积分的敛散性,要详细过程。 因此,收敛
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯