设f(x)是定义在R上的可导函数,且满足f(x)+xf'(x)>0则不等式f(√(x+2))>√(x-2﹚f(√﹙x^2-4﹚﹚的解集
设f(x)是定义在R上的可导函数,且满足f(x)+xf’(x)>0则不等式f(√(x+2))>√(x-2﹚f(√﹙x^2
答案:1 悬赏:0 手机版
解决时间 2021-07-27 03:21
- 提问者网友:書生途
- 2021-07-26 18:18
最佳答案
- 五星知识达人网友:枭雄戏美人
- 2021-07-26 19:40
考虑f(x)+xf'(x)构造函数
F(x)=xf(x)则
F'(x)=f(x)+xf'(x)>0
所以F(x)=xf(x)是增函数
不等式f(√(x+2))>√(x-2﹚f(√﹙x^2-4﹚﹚两边同时乘以√(x+2)
√(x+2)f(√(x+2))>√(x^2-4﹚f(√﹙x^2-4﹚﹚
即F(√(x+2))>F(√(x^2-4﹚)
所以√(x+2)>√(x^2-4﹚
x^2-x-6
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯