f(x)=cos2x-sin2x-2根号3cosxsinx
答案:2 悬赏:80 手机版
解决时间 2021-04-02 08:53
- 提问者网友:最美的风景
- 2021-04-01 11:14
f(x)=cos2x-sin2x-2根号3cosxsinx
最佳答案
- 五星知识达人网友:白昼之月
- 2021-04-01 12:27
解:
(1)
f(x)=cos^2x-sin^2x-2根号3sinxcosx
=cos^2x-sin^2x-根号3sin2x
=cos2x-根号3sin2x
=2cos(2x+π/3)
所以
T=π
(2)
f(x)=8/5
2cos(2x+π/3)=-8/5
cos(2x+π/3)=-4/5
所以
sin(2x+π/3)=-3/5
sin(2x+π/3-π/3)=-3/5x1/2-(-4/5)x根号3/2
=(4根号3 - 3)/10
(1)
f(x)=cos^2x-sin^2x-2根号3sinxcosx
=cos^2x-sin^2x-根号3sin2x
=cos2x-根号3sin2x
=2cos(2x+π/3)
所以
T=π
(2)
f(x)=8/5
2cos(2x+π/3)=-8/5
cos(2x+π/3)=-4/5
所以
sin(2x+π/3)=-3/5
sin(2x+π/3-π/3)=-3/5x1/2-(-4/5)x根号3/2
=(4根号3 - 3)/10
全部回答
- 1楼网友:动情书生
- 2021-04-01 13:54
注意楼上的计算第(2)问不对
解:
f(x)=cos²x-sin²x-2√3cosxsinx
=cos2x-√3sin2x
=-2(sin2x·√3/2-1/2cos2x)
=-2sin(2x-π/6)
(1)
T=2π/w=2π/2=π
(2)
f(x)=-2sin(2x-π/6)=8/5
sin(2x-π/6)=-4/5
x∈[π/4,π/2],则
2x∈[π/2,π]
2x-π/6∈[π/3,5π/6]
此时sin(2x-π/6)>0
与sin(2x-π/6)=-4/5<0矛盾
所以题目有误
请检查互殴追问我一下
解:
f(x)=cos²x-sin²x-2√3cosxsinx
=cos2x-√3sin2x
=-2(sin2x·√3/2-1/2cos2x)
=-2sin(2x-π/6)
(1)
T=2π/w=2π/2=π
(2)
f(x)=-2sin(2x-π/6)=8/5
sin(2x-π/6)=-4/5
x∈[π/4,π/2],则
2x∈[π/2,π]
2x-π/6∈[π/3,5π/6]
此时sin(2x-π/6)>0
与sin(2x-π/6)=-4/5<0矛盾
所以题目有误
请检查互殴追问我一下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯