求函数的极值:f(x,y)=x^3+8y^3-6xy+5
答案:5 悬赏:80 手机版
解决时间 2021-01-16 07:47
- 提问者网友:且恨且铭记
- 2021-01-15 09:00
求函数的极值:f(x,y)=x^3+8y^3-6xy+5
最佳答案
- 五星知识达人网友:鸠书
- 2021-01-15 09:22
df/dx = 3 x^2 - 6 y
df/dy = -6 x + 24 y^2
令df/dx = df/dy = 0
解得
(1) x = 0, y = 0
(2) x = 1, y = 1/2
d²f/dx² = 6x
d²f/dxdy = d²f/dydx = -6
d²f/dy² = 48y
det[d²f/dx², d²f/dxdy; d²f/dydx, d²f/dy²]
= d²f/dx² · d²f/dy² - d²f/dxdy · d²f/dydx
= 288·x·y - 36
(1) x = 0, y = 0, 上式 = -36 < 0
(0, 0)为极大值点,f(0, 0) = 5
(2) x = 1, y = 1/2, 上式 = 108 > 0
(1, 1/2)为极小值点, f(1, 1/2) = 4
df/dy = -6 x + 24 y^2
令df/dx = df/dy = 0
解得
(1) x = 0, y = 0
(2) x = 1, y = 1/2
d²f/dx² = 6x
d²f/dxdy = d²f/dydx = -6
d²f/dy² = 48y
det[d²f/dx², d²f/dxdy; d²f/dydx, d²f/dy²]
= d²f/dx² · d²f/dy² - d²f/dxdy · d²f/dydx
= 288·x·y - 36
(1) x = 0, y = 0, 上式 = -36 < 0
(0, 0)为极大值点,f(0, 0) = 5
(2) x = 1, y = 1/2, 上式 = 108 > 0
(1, 1/2)为极小值点, f(1, 1/2) = 4
全部回答
- 1楼网友:不想翻身的咸鱼
- 2021-01-15 12:50
f(1, 1/2) = 4
- 2楼网友:七十二街
- 2021-01-15 12:10
是用求导作吧
- 3楼网友:洎扰庸人
- 2021-01-15 11:49
那是极小值,极大值f(0,0)=5
- 4楼网友:封刀令
- 2021-01-15 10:13
无穷小
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯