在△ABC中,a=(根3 -1)×c ,tanB/tanC=(2a-c)/c 求A B C的值。
请用正余弦定理解题,谢谢
在△ABC中,a=(根3 -1)×c ,tanB/tanC=(2a-c)/c 求A B C的值。
请用正余弦定理解题,谢谢
a/sinA=c/sinC
得;sinA/sinC=a/c=根号3-1
tanB/tanC=(2a-c)/c=2根号3-3
tanB/tanC=[sinB/(cosB)]*[cosC/(sinC)]
={sin[180-(A+C)]/cos[180-(A+C)]}*[cosC/(sinC)]
=[sin(A+C)/(-cos(A+C)]*[cosC/(sinC)]
=sin(A+C)cosC/[-cos(A+C)sinC]
=[sinAcosC*cosC+cosAsinCcosC]/[-(cosAcosCsinC-sinAsinC*sinC)]
=[sinA(1-sinC*sinC)+cosAsinCcosC]/(-cosAcosCsinC+sinAsinC*sinC)
=[sinA-(-cosAcosCsinC+sinAsinC*sinC)]/(-cosAcosCsinC+sinAsinC*sinC)
=[sinA/(-cosAcosCsinC+sinAsinC*sinC)]-1
={sinA/[(-sinC)cos(A+C)]}-1
=[sinA/(-sinC)]*[1/cos(A+C)]-1
=(1-根号3)*[1/cos(A+C)]-1
而 tanB/tanC=(2a-c)/c=2根号3-3
(1-根号3)*[1/cos(A+C)]-1=2根号3-3
得:cos(A+C)=-1/2
又因为0<A+C<∏
得:A+C=120度
A+B+C=180度 得:B=60度
sinA/sinC=sinA/sin(120-A)
=sinA/cos[90-(120-A)]
=sinA/cos(A-30)
=sinA / (cosAcos30+sinAsin30)
=sinA / (根号3cosA/2)+sinA/2)
sinA/sinC=根号3-1
得:sinA / (根号3cosA/2)+sinA/2)=根号3-1
(3/2-根号3/2)sinA=(3/2-根号3/2)cosA
sinA/cosA=1
sinA*sinA+cosA*cosA=1
得;sinA=根号2/2
得:A=45度或135度
又因为0<A<120
A=135度不符合条件
所以A=45度
C=120-45=75度