f(x)=af1(x), x<=0; f(x)=bf2(x), x>0. 条件(a>0,b>0),则,a,b满足什么
错了。
f2(x)为[-1,5]上
设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上的均匀分布的概率密度若:分段函数
答案:2 悬赏:50 手机版
解决时间 2021-03-04 00:20
- 提问者网友:锁深秋
- 2021-03-03 12:59
最佳答案
- 五星知识达人网友:空山清雨
- 2021-03-03 13:35
选 A 2a+3b=4
∵ ∫f(x)dx│(x=-∞ to +∞)
=∫f(x)dx│(x=-∞ to 0)+∫f(x)dx│(x=0 to +∞)
=∫af1(x)dx│(x=-∞ to 0)+∫bf2(x)dx│(x=0 to 3)
=a/2+3b/4
=1
∴ 2a+3b=4
希望对你能有所帮助。
∵ ∫f(x)dx│(x=-∞ to +∞)
=∫f(x)dx│(x=-∞ to 0)+∫f(x)dx│(x=0 to +∞)
=∫af1(x)dx│(x=-∞ to 0)+∫bf2(x)dx│(x=0 to 3)
=a/2+3b/4
=1
∴ 2a+3b=4
希望对你能有所帮助。
全部回答
- 1楼网友:平生事
- 2021-03-03 13:43
选 a 2a+3b=4
∵ ∫f(x)dx│(x=-∞ to +∞)
=∫f(x)dx│(x=-∞ to 0)+∫f(x)dx│(x=0 to +∞)
=∫af1(x)dx│(x=-∞ to 0)+∫bf2(x)dx│(x=0 to 3)
=a/2+3b/4
=1
∴ 2a+3b=4
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯