线L经过双曲线X2-y2=2的右焦点F,且与双曲线相较于A,B两点.若直线L的斜率为1/2.求线段AB的垂直平分线的方程
答案:2 悬赏:40 手机版
解决时间 2021-02-08 11:32
- 提问者网友:贪了杯
- 2021-02-08 05:12
线L经过双曲线X2-y2=2的右焦点F,且与双曲线相较于A,B两点.若直线L的斜率为1/2.求线段AB的垂直平分线的方程
最佳答案
- 五星知识达人网友:街头电车
- 2021-02-08 05:55
设AB中点为M
双曲线标准方程为:x²/2-y²/2=1
由双曲线中点差法的结论:K(AB)*K(OM)=b²/a²
由题意知:K(AB)=1/2,b²/a²=1
所以,易得:K(OM)=2
所以,OM的直线方程为:y=2x
直线L过右焦点F(2,0),k=1/2
则L的方程为:y=x/2-1
直线OM与直线L的交点就是AB的中点M
y=2x
y=x/2-1
解得:x=-2/3,y=-4/3
所以,M(-2/3,-4/3)
K(AB)=1/2,则其垂直平分线的斜率k=-2
又过点M
所以,垂直平分线的方程为:y+4/3=-2(x+2/3)
即:y=-2x-8/3
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
双曲线标准方程为:x²/2-y²/2=1
由双曲线中点差法的结论:K(AB)*K(OM)=b²/a²
由题意知:K(AB)=1/2,b²/a²=1
所以,易得:K(OM)=2
所以,OM的直线方程为:y=2x
直线L过右焦点F(2,0),k=1/2
则L的方程为:y=x/2-1
直线OM与直线L的交点就是AB的中点M
y=2x
y=x/2-1
解得:x=-2/3,y=-4/3
所以,M(-2/3,-4/3)
K(AB)=1/2,则其垂直平分线的斜率k=-2
又过点M
所以,垂直平分线的方程为:y+4/3=-2(x+2/3)
即:y=-2x-8/3
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
全部回答
- 1楼网友:duile
- 2021-02-08 06:44
抛物线y²=4x的焦点坐标是f(1,0) ,设直线l的方程为y=k(x-4)
(1)根据点到直线的距离公式,有点f(1,0)到直线y=k(x-4)的距离为根号3,有
所以k就是直线的斜率
(2)这个题目的后面需要证明什么?
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯