数学问题34
答案:1 悬赏:0 手机版
解决时间 2021-08-21 00:30
- 提问者网友:动次大次蹦擦擦
- 2021-08-20 13:41
最佳答案
- 五星知识达人网友:煞尾
- 2021-08-20 15:10
解题思路: (1)由∠ADB+∠BAD=135°,∠ADB+∠CDE=135°,得出∠BAD=∠CDE;第二问分AD=AE、AD=DE、AE=DE三种情况讨论. (2)存在,可证△ADC∽△AE′D
解题过程:
解:(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.
②分三种情况:
(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.
(ⅱ)当AD=DE时,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2,
所以AE=AC﹣CE=4﹣2.
(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,
故∠ADC=∠AED=90°.
所以DE=AE=AC=1.
(2)①存在(只有一种情况).
由∠ACB=45°推出∠CAD+∠ADC=45°.
由∠ADE=45°推出∠DAC+∠DE′A=45°.
从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D.
所以,又AD=DE′,所以DC=AC=2.
最终答案:
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯