从双曲线x^2-y^2=1上的一点Q引直线x+y=2的垂线,垂足为N,求线段ON的中点P的轨迹方程。
答案:2 悬赏:80 手机版
解决时间 2021-03-16 01:28
- 提问者网友:孤山下
- 2021-03-15 17:18
这道题求出方程很容易。 但是怎么求x的范围,因为有些值不能取到
最佳答案
- 五星知识达人网友:迷人又混蛋
- 2021-03-15 18:26
设 Q 坐标 (x0, y0)
x + y = 2 斜率为 -1
所以 与其垂直的直线 ON 斜率为 1
ON 方程为
y - y0 = x - x0
联立
y-y0 = x- x0
x + y = 2
解出 N 点坐标
x = 1 + (x0 -y0)/2
y = 1 + (y0 -x0)/2
所以 P 点坐标为
x = [1 + (x0 -y0)/2 + x0]/2 = 1 + (3x0 -y0)/2
y = 1 + (3y0 -x0)/2
转化为
3x0 -y0 = 2x -1
3y0 -x0 = 2y -1
解出
x0 = (3x + y -2)/4
y0 = (3y + x -2)/4
(x0, y0)满足双曲线方程,所以
[(3x+y-2)/4]^2 - [(3y+x-2)/4]^2 = 1
(3x+y-2)^2 - (3y+x-2)^2 = 16
[(3x+y-2) + (3y+x-2)][(3x+y-2)-(3y+x-2)] = 16
4(x+y-1)* 2(x-y) = 16
(x+y-1)(x-y) = 2
x^2 - y^2 - x + y = 2
(x -1/2)^2 - (y -1/2)^2 = 2
此为双曲线方程,其特点为
1)左右开口
2)水平方向对称轴 x = 1/2
3) 垂直方向对称轴 y = 1/2
4) 左支顶点为 x=1/2 - √2,y=1/2
5)右支顶点为 x=1/2 + √2, y=1/2
你所关心的 x的取值范围:
x ≤1/2 - √2 和 x ≥ 1/2 + √2
x + y = 2 斜率为 -1
所以 与其垂直的直线 ON 斜率为 1
ON 方程为
y - y0 = x - x0
联立
y-y0 = x- x0
x + y = 2
解出 N 点坐标
x = 1 + (x0 -y0)/2
y = 1 + (y0 -x0)/2
所以 P 点坐标为
x = [1 + (x0 -y0)/2 + x0]/2 = 1 + (3x0 -y0)/2
y = 1 + (3y0 -x0)/2
转化为
3x0 -y0 = 2x -1
3y0 -x0 = 2y -1
解出
x0 = (3x + y -2)/4
y0 = (3y + x -2)/4
(x0, y0)满足双曲线方程,所以
[(3x+y-2)/4]^2 - [(3y+x-2)/4]^2 = 1
(3x+y-2)^2 - (3y+x-2)^2 = 16
[(3x+y-2) + (3y+x-2)][(3x+y-2)-(3y+x-2)] = 16
4(x+y-1)* 2(x-y) = 16
(x+y-1)(x-y) = 2
x^2 - y^2 - x + y = 2
(x -1/2)^2 - (y -1/2)^2 = 2
此为双曲线方程,其特点为
1)左右开口
2)水平方向对称轴 x = 1/2
3) 垂直方向对称轴 y = 1/2
4) 左支顶点为 x=1/2 - √2,y=1/2
5)右支顶点为 x=1/2 + √2, y=1/2
你所关心的 x的取值范围:
x ≤1/2 - √2 和 x ≥ 1/2 + √2
全部回答
- 1楼网友:迷人又混蛋
- 2021-03-15 19:45
解:设动点p的坐标为(x,y),点q的坐标为(x1,y1)
则n( 2x-x1,2y-y1)代入x+y=2,得2x-x1+2y-y1=2 ①
又pq垂直于直线x+y=2,故(y-y1)/(x-x1)=1,即x-y+y1-x1=0 ②
由①②解方程组得x1=3/2x+1/2y-1,y1=1/2x+3/2y-1,
代入双曲线方程即可得p点的轨迹方程是2x²-2y²-2x+2y-1=0
希望能帮到你,祝学习进步
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯