观察下列各式:1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;…
根据上述算式所反映出的规律,猜想“任意四个连续正整数的积与1的和一定是一个完全平方数”,你认为这个猜想正确吗?说说你的理由.
观察下列各式:1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;…根据上述算式所反映出的规律,猜想“任意四个连续
答案:2 悬赏:10 手机版
解决时间 2021-01-04 21:00
- 提问者网友:嘚啵嘚啵
- 2021-01-04 03:05
最佳答案
- 五星知识达人网友:怙棘
- 2021-01-04 04:22
解:正确.
理由:设四个连续的正整数为n、(n+1)、(n+2)、(n+3)则
n(n+1)(n+2)(n+3)+1,
=(n2+3n)(n2+3n+2)+1,
=(n2+3n)2+2(n2+3n)+1,
=(n2+3n+1)2.解析分析:此题要用代数式把连续的正整数表示出来,按照题中给出的关系列出式子,进行验证,只要会把最后形式写成一个完全平方式的形式就能证明这个规律是正确的.点评:本题考查了完全平方公式,关键是能够用代数式把题中所说的关系式列出来,然后通过运算写成完全平方式的形式,即可证明结论正确.难点在于多项式乘以多项式的运算后,如何化为完全平方式.
理由:设四个连续的正整数为n、(n+1)、(n+2)、(n+3)则
n(n+1)(n+2)(n+3)+1,
=(n2+3n)(n2+3n+2)+1,
=(n2+3n)2+2(n2+3n)+1,
=(n2+3n+1)2.解析分析:此题要用代数式把连续的正整数表示出来,按照题中给出的关系列出式子,进行验证,只要会把最后形式写成一个完全平方式的形式就能证明这个规律是正确的.点评:本题考查了完全平方公式,关键是能够用代数式把题中所说的关系式列出来,然后通过运算写成完全平方式的形式,即可证明结论正确.难点在于多项式乘以多项式的运算后,如何化为完全平方式.
全部回答
- 1楼网友:woshuo
- 2021-01-04 04:51
这个问题的回答的对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |