小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况.他们分工完成后,各自通报探究的结论:①小明认为只有当x=2时,x2-4x+5的值为1;②小亮认为找不
答案:2 悬赏:50 手机版
解决时间 2021-04-04 11:19
- 提问者网友:我们很暧昧
- 2021-04-04 02:14
小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况.他们分工完成后,各自通报探究的结论:①小明认为只有当x=2时,x2-4x+5的值为1;②小亮认为找不到实数x,使x2-4x+5的值为O;③小梅发现x2-4x+5的值随x的变化而变化,因此认为没有最小值;④小花发现当x取大于2的实数时,x2-4x+5的值随x的增大而增大,因此认为没有最大值.则其中正确结论的序号是________.
最佳答案
- 五星知识达人网友:千夜
- 2021-04-04 02:44
①②④解析分析:本题考查二次函数最小(大)值的求法.将四个人的结论分别进行分析计算.解答:①、x2-4x+5=(x-2)2+1,故只有当x=2时,x2-4x+5的值为1;
②、当x2-4x+5=O时,△=16-4×5=-4<0,方程无解,故找不到实数x,使x2-4x+5的值为O;
③、函数y=x2-4x+5开口向上,有最小值;
④、对称轴为x=2,当x取大于2的实数时,x2-4x+5的值随x的增大而增大,无最大值.
故①②④正确.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
②、当x2-4x+5=O时,△=16-4×5=-4<0,方程无解,故找不到实数x,使x2-4x+5的值为O;
③、函数y=x2-4x+5开口向上,有最小值;
④、对称轴为x=2,当x取大于2的实数时,x2-4x+5的值随x的增大而增大,无最大值.
故①②④正确.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
全部回答
- 1楼网友:由着我着迷
- 2021-04-04 03:23
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯