如图1:在平面直角坐标系中,矩形OABC的两边分别在X轴和Y轴上,OA=8√2cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒√2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动。设运动时间为t秒。
1、用t的式子表示△OPQ的面积S; 2、求证:四边形OPBQ的面积是一个定值,并求出这个定值; 3、当△OPQ与△PAB和△QPB相似时,抛物线y=1/4x^2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线j交抛物线于N,当线段MN的长取最大值值时,求直线MN把四边形OPBQ分成两部分的面积之比。
如图2:是两次函数y=(x+m)^2+k的图像,其顶点坐标为M(1,-4)
1、求出图像与x轴的交点A、B的坐标;
2、在二次函数的图像上是否存在点P,使S△PAB=5/4S△MAB,若存在,求出P点的坐标;若不存在,请说明理由;
3、将二次函数的图像在x轴下方的部分,沿x轴翻折,图像的其余部分保持不变,得到一个新的图像,请你结合这个新的图像回答:当直线y=x+b(b〈1)与此图像有两个公共点时,b的取值范围。
如图3:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路劲的长是_________