急呀(!数学题
答案:5 悬赏:0 手机版
解决时间 2021-06-02 13:08
- 提问者网友:夢醒日落
- 2021-06-01 16:36
在三角形ABC中,角ABC=90度,BD平分角ABC,DE垂直BC,DF垂直AB。
求证:四边行BEDF是正方形。
最佳答案
- 五星知识达人网友:夜余生
- 2021-06-01 17:37
角B=角DEB=角DFB =90度 所以DE//AB DF//BE 所以BEDF是平形四边形 又因为BD是角B的平分线 DE垂直BC DF垂直AB 所以DF=DE 所以平形四边形BEDF是正方形
全部回答
- 1楼网友:不想翻身的咸鱼
- 2021-06-01 20:58
因为∠DBE=1/2∠FBE=45°,∠DEB=90°,则△DEB为等腰直角三角形,DE=EB:同理,可证三角形DFB为等腰直角三角形,DF=FB.又因为∠DEB=∠EBF=∠BFD=∠FDE=90°,所以四边形DFBE为正方形。
- 2楼网友:佘樂
- 2021-06-01 20:04
角ABC,DFB,BED都为90度,再加上三角形DFB为等腰三角形,因为B D平分角ABC,DF有垂直BF,所以DF=BF,得证
- 3楼网友:煞尾
- 2021-06-01 18:41
先证是长方形,再证BE=EF就可以了
- 4楼网友:雾月
- 2021-06-01 17:51
画个图就很容易得知角DBE=45°,又因为DE垂直BC,DF垂直AB,而且因为DE=BE,综上可得,四边行BEDF是正方形
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯