平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.
平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形
答案:1 悬赏:0 手机版
解决时间 2021-05-22 01:49
- 提问者网友:雨不眠的下
- 2021-05-21 07:25
最佳答案
- 五星知识达人网友:詩光轨車
- 2021-05-21 09:01
证明:假设A、B,C、D四点,任选三点构成的三角形的三个内角都大于45°,
当ABCD构成凸四边形时,可得各角和大于360°,与四边形内角和等于360°矛盾;
当ABCD构成凹四边形时,可得三角形内角和大于180°,与三角形内角和等于180°矛盾.
故在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.
再问: 复制的吧 要不两秒钟怎么打的玩
试题解析:
根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于45°,从假设出发推出矛盾:四边形内角和大于360°矛盾;三角形内角和大于180°.从而得以证明结论.
名师点评:
本题考点: 多边形内角与外角;三角形内角和定理.
考点点评: 本题考查了反证法.
反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯