在△ABC中,a、b、c分别为内角A、B、C的对边且2asinA=(2b+c)sinB+(2c+b)sinC
求A的大小
若sinB+sinC=1,判断△ABC的形状
在△ABC中,a、b、c分别为内角A、B、C的对边且2asinA=(2b+c)sinB+(2c+b)sinC
答案:1 悬赏:40 手机版
解决时间 2021-05-23 16:00
- 提问者网友:谁的错
- 2021-05-23 03:35
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-05-23 04:55
(1)由已知:2asinA=(2b+c)sinB+(2c+b)sinC
,根据正弦定理得:
2a²=(2b+c)b+(2c+b)c,
即:a²=b²+c²+bc
由余弦定理得:a²=b²+c²-2bccosA
所以:cosA=-1/2,
所以 A=120°
(2)由(1)得:sin²A=sin²B+sin²C+sinBsinC
又:sinB+sinC=1,
得:sinB=sinC=1/2
因为0°< B < 90°,0°< C < 90°,
所以:B=C
所以△ABC是等腰的钝角三角形.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯