证明恒等式;arcsinx+arccosx=π/2(-1≤x≤1)
答案:1 悬赏:0 手机版
解决时间 2021-04-01 07:58
- 提问者网友:别再叽里呱啦
- 2021-03-31 11:02
证明恒等式;arcsinx+arccosx=π/2(-1≤x≤1)
最佳答案
- 五星知识达人网友:猎心人
- 2021-03-31 11:38
证明恒等式;arcsinx+arccosx=π/2 (-1≤x≤1)
证明:
设 arcsinx = u, arccosx = v ,(-1≤x≤1),
则 sinu=x,cosu=√[1-(sinu)^2]=√[1-x^2],
cosv=x,sinv=√[1-(cosv)^2]=√[1-x^2],
左边=arcsinx+arccosx=
=sin(u+v)=sinuconv+conusinv=
=x^2+√[1-x^2]√[1-x^2]=
=x^2+1-x^2=
=1,
右边=sin(π/2)=1,
因为 左边=右边,故
arcsinx+arccosx=π/2 成立,(-1≤x≤1)。
证明:
设 arcsinx = u, arccosx = v ,(-1≤x≤1),
则 sinu=x,cosu=√[1-(sinu)^2]=√[1-x^2],
cosv=x,sinv=√[1-(cosv)^2]=√[1-x^2],
左边=arcsinx+arccosx=
=sin(u+v)=sinuconv+conusinv=
=x^2+√[1-x^2]√[1-x^2]=
=x^2+1-x^2=
=1,
右边=sin(π/2)=1,
因为 左边=右边,故
arcsinx+arccosx=π/2 成立,(-1≤x≤1)。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯