lim(x-sinx)/(x-xcosx)=?(x->0)
答案:2 悬赏:80 手机版
解决时间 2021-02-11 15:10
- 提问者网友:王者佥
- 2021-02-10 18:53
lim(x-sinx)/(x-xcosx)=?(x->0)
最佳答案
- 五星知识达人网友:玩世
- 2021-02-10 19:47
1/3
解析:
A/B=0/0型
使用洛必达法则
A'=1-cosx
B'=1-(cosx-xsinx)
A''=(1-cosx)'=sinx
B''
=[1-(cosx-xsinx)]'
=(1-cosx+xsinx)'
=sinx+(sinx+xcosx)
=2sinx+xcosx
A'''=cosx
B'''
=(2sinx+xcosx)'
=2cosx+cosx-xsinx
=3cosx-xsinx
x→0时,
lim(A/B)
=lim(A'/B')
=lim(A''/B'')
=lim(A'''/B''')
=lim[cosx/(3cosx-xsinx)]
=1/(3●1-0)
=1/3
解析:
A/B=0/0型
使用洛必达法则
A'=1-cosx
B'=1-(cosx-xsinx)
A''=(1-cosx)'=sinx
B''
=[1-(cosx-xsinx)]'
=(1-cosx+xsinx)'
=sinx+(sinx+xcosx)
=2sinx+xcosx
A'''=cosx
B'''
=(2sinx+xcosx)'
=2cosx+cosx-xsinx
=3cosx-xsinx
x→0时,
lim(A/B)
=lim(A'/B')
=lim(A''/B'')
=lim(A'''/B''')
=lim[cosx/(3cosx-xsinx)]
=1/(3●1-0)
=1/3
全部回答
- 1楼网友:野味小生
- 2021-02-10 20:49
lim(x->0) (x - xcosx)/(x - sinx)
= lim(x->0) (x - xcosx)'/(x - sinx)'
= lim(x->0) [1 - (cosx - xsinx)]/(1 - cosx)
= lim(x->0) (1 - cosx + xsinx)'/(1 - cosx)'
= lim(x->0) [sinx + (sinx + xcosx)]/sinx
= lim(x->0) (2sinx + xcosx)'/(sinx)'
= lim(x->0) (2cosx + cosx - xsinx)/cosx
= lim(x->0) (3 - xtanx)
= 3 - 0
= 3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯