如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四
答案:2 悬赏:10 手机版
解决时间 2021-01-03 20:29
- 提问者网友:斑駁影
- 2021-01-03 17:21
最佳答案
- 五星知识达人网友:天凉才是好个秋
- 2021-01-03 18:54
证明:(1)∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°.
∵AB=AC,
∴∠B=∠C.
∵D是BC的中点,
∴BD=CD.
∴△BED≌△CFD.
(2)∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°.
∵∠A=90°,
∴四边形DFAE为矩形.
∵△BED≌△CFD,
∴DE=DF.
∴四边形DFAE为正方形.解析分析:(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.
(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.点评:本题利用了全等三角形的判定和性质以及矩形、正方形的判定.
∴∠BED=∠CFD=90°.
∵AB=AC,
∴∠B=∠C.
∵D是BC的中点,
∴BD=CD.
∴△BED≌△CFD.
(2)∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°.
∵∠A=90°,
∴四边形DFAE为矩形.
∵△BED≌△CFD,
∴DE=DF.
∴四边形DFAE为正方形.解析分析:(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.
(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.点评:本题利用了全等三角形的判定和性质以及矩形、正方形的判定.
全部回答
- 1楼网友:第幾種人
- 2021-01-03 19:04
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |