我们知道对于闭区间套,区间套定理成立。但书上说闭区间套不能改成开区间套,例如{(0,1/n)}就不成立。
那么是否任何开区间套都不成立呢?例如,开区间套{(2+1/n,2-1/n)}的区间套定理是否成立,请证明。
不好意思写反了,应该是{(2+1/n,2-1/n)}
开区间套{(2+1/n,2-1/n)}的区间套定理成立吗?为什么?
答案:3 悬赏:0 手机版
解决时间 2021-01-04 17:22
- 提问者网友:未信
- 2021-01-03 20:43
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-01-10 03:53
你还是写反了,应该为:(2-1/n,2+1/n)
答:对于此区间套,区间套定理成立,因为此类开区间内均可造出一个闭区间来,因此仍可得一闭区间套如[2-1/2n,2+1/2n],该区间套内存在唯一一点2,属于所有闭区间[2-1/2n,2+1/2n],当然2也属于所有开区间(2-1/n,2+1/n).
答:对于此区间套,区间套定理成立,因为此类开区间内均可造出一个闭区间来,因此仍可得一闭区间套如[2-1/2n,2+1/2n],该区间套内存在唯一一点2,属于所有闭区间[2-1/2n,2+1/2n],当然2也属于所有开区间(2-1/n,2+1/n).
全部回答
- 1楼网友:舍身薄凉客
- 2021-01-10 06:30
否,因为2存在于{(2+1/n,2-1/n)}中每一个区间,并且任意一个非2的数,均在某一个区间之外,只要n充分大使得1/n小于两数差了
是为反例,楼主自己已经证明了。
- 2楼网友:我住北渡口
- 2021-01-10 05:32
你好!
你还是写反了,应该为:(2-1/n,2+1/n)
答:对于此区间套,区间套定理成立,因为此类开区间内均可造出一个闭区间来,因此仍可得一闭区间套如[2-1/2n,2+1/2n],该区间套内存在唯一一点2,属于所有闭区间[2-1/2n,2+1/2n],当然2也属于所有开区间(2-1/n,2+1/n).
如果对你有帮助,望采纳。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |