如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,∠B=∠________
又∵AB∥DE,AB∥CF,
∴________
∴∠E=∠________
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,∠B=∠________又∵AB∥DE,AB∥CF,∴_______
答案:2 悬赏:60 手机版
解决时间 2021-04-13 09:28
- 提问者网友:沉默菋噵
- 2021-04-13 04:13
最佳答案
- 五星知识达人网友:玩家
- 2021-04-13 04:27
1(两直线平行,内错角相等) DE∥CF(平行于同一条直线的两直线平行) 2(两直线平行,内错角相等)解析分析:关系为∠B+∠E=∠BCE,理由为:过点C作CF∥AB,理由两直线平行,内错角相等得到∠B=∠1,再利用平行于同一条直线的两直线平行得到DE与CF平行,利用两直线平行内错角相等得到∠E=∠2,利用等式的性质得到∠B+∠E=∠1+∠2,等量代换即可得证.解答:∠B+∠E=∠BCE,理由为:
过点C作CF∥AB,∠B=∠1(两直线平行,内错角相等),
又∵AB∥DE,AB∥CF,
∴DE∥CF(平行于同一条直线的两直线平行),
∴∠E=∠2(两直线平行,内错角相等),
∴∠B+∠E=∠1+∠2,
即∠B+∠E=∠BCE.
故
过点C作CF∥AB,∠B=∠1(两直线平行,内错角相等),
又∵AB∥DE,AB∥CF,
∴DE∥CF(平行于同一条直线的两直线平行),
∴∠E=∠2(两直线平行,内错角相等),
∴∠B+∠E=∠1+∠2,
即∠B+∠E=∠BCE.
故
全部回答
- 1楼网友:行路难
- 2021-04-13 05:35
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯