如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F,求证:CE=CF.
答案:2 悬赏:10 手机版
解决时间 2021-04-11 11:22
- 提问者网友:容嬷嬷拿针来
- 2021-04-10 19:56
如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F,求证:CE=CF.
最佳答案
- 五星知识达人网友:蕴藏春秋
- 2021-04-10 20:38
证明:∵∠ACB=90°,CD⊥AB,
∴∠CDA=90°,
∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,
∵AF平分∠CAB,
∴∠CAF=∠FAD,
∴∠CFA=∠AED=∠CEF,
∴CE=CF.解析分析:根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可.点评:本题考查了直角三角形性质,等腰三角形的性质和判定,三角形的内角和定理,关键是推出∠CEF=∠CFE.
∴∠CDA=90°,
∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,
∵AF平分∠CAB,
∴∠CAF=∠FAD,
∴∠CFA=∠AED=∠CEF,
∴CE=CF.解析分析:根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可.点评:本题考查了直角三角形性质,等腰三角形的性质和判定,三角形的内角和定理,关键是推出∠CEF=∠CFE.
全部回答
- 1楼网友:神的生死簿
- 2021-04-10 21:17
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯