1.已知数列{a(n)}的各项均不为零,且a(n)=[3a(n)-1]/[a(n-1)+3] (n≥2),b(n)=1/a(n).
求证:数列{b(n)}是等差数列.
1.已知数列{a(n)}的各项均不为零,且a(n)=[3a(n)-1]/[a(n-1)+3] (n≥2),b(n)=1/
答案:1 悬赏:60 手机版
解决时间 2021-08-24 12:42
- 提问者网友:愿为果
- 2021-08-23 18:15
最佳答案
- 五星知识达人网友:北方的南先生
- 2021-08-23 19:20
证明:由an=3a(n-1)/[a(n-1)+3] (n>=2)可得
a(n+1)=3an/(an+3) (n>=1)
由于{an}各项均不为零,此式两边取倒数得
1/a(n+1)=(an+3)/3an (n>=1)
化简得 [1/a(n+1)]-(1/an)=1/3 (n>=1)
即{1/an}(n>=1)为公差为1/3的等差数列
即{bn}是等差数列
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯