三项均值不等式的详细证法
答案:2 悬赏:30 手机版
解决时间 2021-03-27 03:24
- 提问者网友:我们很暧昧
- 2021-03-26 06:18
三项均值不等式的详细证法
最佳答案
- 五星知识达人网友:人類模型
- 2021-03-26 07:57
a+b+c=(3∧√a)^3+(3∧√b)^3+(3∧√c)^3≥3(3∧√a)(3∧√b)(3∧√c),即:a+b+c≥3*3∧√abc
先证两个数的情形;
(a+b)/2>=√(ab). (1)
(1)<=>(√a-√b)^2>=0(显然成立)
再证四个数的情形;
(a+b+c+d)/4>=(abcd)^(1/4) (2)
反复应用(1)得
(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2
>=(√(ab)+√(cd))/2>=√[√(ab)√(cd)]
=(abcd)^(1/4).
最后证三个数的情形;
(a+b+c)/3>=(abc)^(1/3).
在(2)中取d=(a+b+c)/3,得
(a+b+c+(a+b+c)/3)/4>=(abc(a+b+c)/3d)^(1/4) ,
即(a+b+c)/3>=(abc(a+b+c)/3d)^(1/4),
两边4次方,并约去(a+b+c)/3得
[(a+b+c)/3]^3>=abc,
两边开立方,得
(a+b+c)/3>=(abc)^(1/3)
先证两个数的情形;
(a+b)/2>=√(ab). (1)
(1)<=>(√a-√b)^2>=0(显然成立)
再证四个数的情形;
(a+b+c+d)/4>=(abcd)^(1/4) (2)
反复应用(1)得
(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2
>=(√(ab)+√(cd))/2>=√[√(ab)√(cd)]
=(abcd)^(1/4).
最后证三个数的情形;
(a+b+c)/3>=(abc)^(1/3).
在(2)中取d=(a+b+c)/3,得
(a+b+c+(a+b+c)/3)/4>=(abc(a+b+c)/3d)^(1/4) ,
即(a+b+c)/3>=(abc(a+b+c)/3d)^(1/4),
两边4次方,并约去(a+b+c)/3得
[(a+b+c)/3]^3>=abc,
两边开立方,得
(a+b+c)/3>=(abc)^(1/3)
全部回答
- 1楼网友:何以畏孤独
- 2021-03-26 08:50
先证两个数的情形;
(a+b)/2>=√(ab). (1)
(1)<=>(√a-√b)^2>=0(显然成立)
再证四个数的情形;
(a+b+c+d)/4>=(abcd)^(1/4) (2)
反复应用(1)得
(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2
>=(√(ab)+√(cd))/2>=√[√(ab)√(cd)]
=(abcd)^(1/4).
最后证三个数的情形;
(a+b+c)/3>=(abc)^(1/3).
在(2)中取d=(a+b+c)/3,得
(a+b+c+(a+b+c)/3)/4>=(abc(a+b+c)/3d)^(1/4) ,
即(a+b+c)/3>=(abc(a+b+c)/3d)^(1/4),
两边4次方,并约去(a+b+c)/3得
[(a+b+c)/3]^3>=abc,
两边开立方,得
(a+b+c)/3>=(abc)^(1/3)
(a+b)/2>=√(ab). (1)
(1)<=>(√a-√b)^2>=0(显然成立)
再证四个数的情形;
(a+b+c+d)/4>=(abcd)^(1/4) (2)
反复应用(1)得
(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2
>=(√(ab)+√(cd))/2>=√[√(ab)√(cd)]
=(abcd)^(1/4).
最后证三个数的情形;
(a+b+c)/3>=(abc)^(1/3).
在(2)中取d=(a+b+c)/3,得
(a+b+c+(a+b+c)/3)/4>=(abc(a+b+c)/3d)^(1/4) ,
即(a+b+c)/3>=(abc(a+b+c)/3d)^(1/4),
两边4次方,并约去(a+b+c)/3得
[(a+b+c)/3]^3>=abc,
两边开立方,得
(a+b+c)/3>=(abc)^(1/3)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯