圆O的内接四边形ABCD的AB是圆O的直径,D是弧AB的中点,DE垂直于AB 于点E,DE交与AC于F求证1AE*AB=AF*AC求证2AF=DF
答案:1 悬赏:0 手机版
解决时间 2021-05-08 12:18
- 提问者网友:寂寞梧桐
- 2021-05-07 14:12
圆O的内接四边形ABCD的AB是圆O的直径,D是弧AB的中点,DE垂直于AB 于点E,DE交与AC于F求证1AE*AB=AF*AC求证2AF=DF
最佳答案
- 五星知识达人网友:风格不统一
- 2021-05-07 15:51
证明1.将问题换个形式 AE*AB=AF*AC→AE/AF=AC/AB这样就转换成一个求相似的问题。
连接AC则∠ACB是90°
∵AB是直径,D是弧AB 的中点DE垂直于AB 于点E
∴点E在圆O上∠AEF是90°
又∵∠CAB=∠FAE(同一个角)
∴△ACB相似△AEF
∴AF:AE=AB:AC
∴AE*AB=AF*AC
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯