在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA垂直底面abcd,AB=根号三,BC=1PA=2
答案:2 悬赏:40 手机版
解决时间 2021-02-19 17:44
- 提问者网友:别再叽里呱啦
- 2021-02-19 13:26
在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA垂直底面abcd,AB=根号三,BC=1PA=2
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-02-19 13:53
在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA垂直底面abcd,AB=根号三,BC=1PA=2E为PD中点.求直线AC与PB所成角的余弦值.3,在侧面PAB内找出一点N,使NE垂直平面PAC.不好上图百度得到这倒题哪里有图.(图1)答案网 www.Zqnf.com 答案网 www.Zqnf.com 1、取AB中点F,BC中点G,PA中点H,连结FG、FH、HG,∵FH和FG分别是△PBA和ABC的中位线,∴FH//PB,FG//AC,∴〈HFG和异面直线PB与AC所成角相等,根据勾股定理,AC=2,PB=√7,∴FG=AC/2=1,FH=PB/2=√7/2,AG=√(AB^2+BG^2)=√13/2,HG=√(AH^2+AG^2)=√17/2,根据余弦定理,cos<HFG=(HF^2+FG^2-HG^2)/(2FH*FG)=-3√7/14,因直线夹角小于等于90°,故取锐角,∴直线AC与PB所成角的余弦值为3√7/14.2、∵PA⊥平面ABCD,∴平面PAB、平面PAC、平面PAD均垂直底面ABCD,EN必在平行于平面ABCD,且距离为1的平行平面上,只要求出N在底AB线段的投影N‘位置即可,画出底面矩形ABCD,连结AC,AD中点E’,作E‘N’⊥AC,交AC于K,AB于N,RT△AKE‘∽RT△ADC,AE’*AD=AK*AC,AE‘=1/2,AC=2,∴AK=1/4,E’K=√(1/4-1/16)=√3/4,AK^2=KE'*N'K,(RT△斜边高是斜边两部分的比例中项),N‘K=√3/12,∴N’E‘=N’K+KE‘=√3/3,∴AN’=√(N'E'^2-AE'^2)=√3/6,∴N点距底面距离为1,距PA距离为√3/6.即在AB上找到AN‘=√3/6,在PAB平面上过N’点作垂线,NN‘,使NN’=1,该N即为所求垂足点.若学过向量,用向量建空间坐标系来作很容易.
全部回答
- 1楼网友:污到你湿
- 2021-02-19 15:00
就是这个解释
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯