生活中的函数和方程
答案:4 悬赏:50 手机版
解决时间 2021-03-10 15:57
- 提问者网友:黑米和小志
- 2021-03-09 20:22
生活中应用函数的例子,并有方程解决过程
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-03-09 20:59
函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元。因为在生产过程中,平均每生产一件产品有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。
方案1:工厂污水先净化处理后再排出。每处理1立方米污水所用原料费为2元,并且每月排污设备损耗费为30000元;
方案2:工厂将污水排到污水厂统一处理。每处理1立方米需付14元的排污费。
问:
1.设工厂每月生产x件产品,每月利润为y元,分别求出依方案1和方案2处理污水时,y与x的函数关系式;(利润=总收入-总支出)
2.设工厂每月生产量为6000件产品时,你若作为厂长在不污染环境,又节约资金的前提下应选用哪种处理污水的方案,请通过计算加以说明。
解:(1)设选用方案1每月利润为 y1元;选用方案2每月利润为 y2元.
依方案1,可得
y1=(50-25)x-2×0.5x-3000
=25x-x-30000
=24x-30000.
∴ y1=24x-30000.
依方案2,可得
y2=(50-25)x-14×0.5x
=25x-7x
=18x.
∴ y2=18x.
(2)∵ 当x=6000时,
y1=24x-30000=24×6000-30000=114000(元),
y2=18x=18×6000=108000(元),
∴ y1> y2.
1有个工厂,每天产1个产品,求画图
2有个桥,他的洞是个弧形,象个反比例
,可能问,船多高过不去啊?
3蓄电池的电压为定值为10V,使用此电源时,电流I(A)=1A求电阻R?
解答?我说的很简略``
1Y=X Y是生产总量,X是每天生产量
2假设桥洞的函数是Y=-X^2+3
设船高3。5米
则不能过去
3
R=U/I=10/1=10欧
某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55-0.75元之间。经验算,若电价调至X元,则本年度新增用电量Y(亿度)与(X-0.4)元成反比例,又当X=0.65元时,Y=0.8。
(1)求Y与X之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?
(收益=用电量 乘以 (实际电价-成本价))
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元。因为在生产过程中,平均每生产一件产品有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。
方案1:工厂污水先净化处理后再排出。每处理1立方米污水所用原料费为2元,并且每月排污设备损耗费为30000元;
方案2:工厂将污水排到污水厂统一处理。每处理1立方米需付14元的排污费。
问:
1.设工厂每月生产x件产品,每月利润为y元,分别求出依方案1和方案2处理污水时,y与x的函数关系式;(利润=总收入-总支出)
2.设工厂每月生产量为6000件产品时,你若作为厂长在不污染环境,又节约资金的前提下应选用哪种处理污水的方案,请通过计算加以说明。
解:(1)设选用方案1每月利润为 y1元;选用方案2每月利润为 y2元.
依方案1,可得
y1=(50-25)x-2×0.5x-3000
=25x-x-30000
=24x-30000.
∴ y1=24x-30000.
依方案2,可得
y2=(50-25)x-14×0.5x
=25x-7x
=18x.
∴ y2=18x.
(2)∵ 当x=6000时,
y1=24x-30000=24×6000-30000=114000(元),
y2=18x=18×6000=108000(元),
∴ y1> y2.
1有个工厂,每天产1个产品,求画图
2有个桥,他的洞是个弧形,象个反比例
,可能问,船多高过不去啊?
3蓄电池的电压为定值为10V,使用此电源时,电流I(A)=1A求电阻R?
解答?我说的很简略``
1Y=X Y是生产总量,X是每天生产量
2假设桥洞的函数是Y=-X^2+3
设船高3。5米
则不能过去
3
R=U/I=10/1=10欧
某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55-0.75元之间。经验算,若电价调至X元,则本年度新增用电量Y(亿度)与(X-0.4)元成反比例,又当X=0.65元时,Y=0.8。
(1)求Y与X之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?
(收益=用电量 乘以 (实际电价-成本价))
全部回答
- 1楼网友:愁杀梦里人
- 2021-03-09 23:26
争议函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
- 2楼网友:街头电车
- 2021-03-09 22:01
付话费0.6(这里均指市内通话)。若一个月内通话x分钟。
(1)一个月内通话多少分钟。甲?
(2)若某人预计一个月内使用话费200元,则应选择哪种通讯方式教合算?
3.人民政府下达了停止办理摩托车入户手续文件,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去两位游客的旅游费用,其余游客八折优惠.4元;“神州行”不缴月基础费,每通话1分钟,两种通讯方式的费用相同:“全球通”使用者先缴50元月基础费?
2.某市移动通讯公司开设了两种通讯业务:
Ⅱ假设从2002年起n年内南宁市的摩托车平均每年退役a万辆,同时增加公交车的数量,使新增公交车的运送能力总量等于退役的摩托车原有的运送能力总量1.我校计划组织部分学生旅游、乙两旅行社的服务质量相同,且旅游的价格都是每人200元。我们应怎样选择,此时市区居民摩托车拥有量已达32万辆。据统计每7辆摩托车排放的有害污染物总量等于一辆公交车排放的污染物,然后每通话1分钟,再付电话费0。
(1)求增加公交车的数量y与时间 n(年)之间的函数关系。填空,两种通讯方式的费用分别为y1元和y2元。为促进旅游发展,而每辆摩托车的运送能力是一辆公交车运送能力的8%。
根据上述材料解答下列问题:y = (不要求写出n的取值范围)
(2)若经过5年剩余的摩托车与新增公交车排放污染物的总量等于32万辆摩托车排放污染物总量的60%,使支付的旅游总费用较少
- 3楼网友:山有枢
- 2021-03-09 21:50
推铅球比赛,假设运动员用力推出铅球的离手速度V和高度H一定,求当出手方向与水平方向成什么角度时,铅球能推出最远.
解:设出手方向与水平方向夹角X,推出距离F(X),
则F(X)=V *t *cosX
t=2 *V *sinX/g +{2*[0.5(V/g)^2+H]/g}^0.5
求上述关于X的函数F(X)的最大值,这是正(余)弦函数,
可得45度时能推的最远。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯