已知函数f(x)=根号√x^2+1-ax.其中a>0,若2f(1)=f(-1),求a的值,证明,当且仅当a>=1时,函数f(x)在区间【0,正无穷)上为单调函数
已知函数f(x)=根号√x^2+1-ax.其中a>0,若2f(1)=f(-1),求a的值,证明,当且仅当a>=1时,函数
答案:1 悬赏:70 手机版
解决时间 2021-05-22 06:30
- 提问者网友:最美的风景
- 2021-05-22 01:34
最佳答案
- 五星知识达人网友:不想翻身的咸鱼
- 2021-05-22 02:34
2f(1)=f(-1),
即:2(根号(1+1)-a)=根号(1+1)+a
2根号2-2a=根号2+a
a=根号2/3.
2.
设有x1,x2∈[0,+∞),且x1>x2,则
f(x1)-f(x2)=根号(x1²+1)-ax1-根号(x2²+1)+ax2
=根号(x1²+1)-根号(x2²+1)-a(x1-x2)
≤根号((x1+1)²)-根号((x2+1)²)-a(x1-x2)(注意此步成立是因为x1和x2都大于零)
=(x1+1)-(x2+1)-a(x1-x2)
=(1-a)(x1-x2)
由于a≥1且x1>x2,所以(1-a)(x1-x2)≤0,故f(x1)-f(x2)≤0,由此可知f(x)在区间[0,+∞)上为单调减函数.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯