已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
x2+x
2 的图象上;
(Ⅰ)求数列{an}的通项an及前n项和Sn;
(Ⅱ)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.
已知数列{An}的前n项和为Sn,a1=1,满足下列条件①?n∈N*,an≠0;②点Pn(an,Sn)在函数f(x)=x2+x2的
答案:2 悬赏:20 手机版
解决时间 2021-03-24 18:41
- 提问者网友:轻浮
- 2021-03-24 00:45
最佳答案
- 五星知识达人网友:动情书生
- 2021-03-24 01:25
解答:(I)解:由题意Sn=
an2+an
2 ,
当n≥2时an=Sn-Sn-1=
an2+an
2 ?
an?12+an?1
2 ,
整理,得(an+an-1)(an-an-1-1)=0,
又?n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,
an
an?1 =?1,
得an=(?1)n?1,Sn=
1?(?1)n
2 ;
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,Sn=
n2+n
2 .
(II)证明:当an+an-1=0时,Pn((?1)n?1,
1?(?1)n
2 ),
|Pn+1Pn+2|=|PnPn+1|=
5 ,所以|Pn+1Pn+2|-|PnPn+1|=0,
当an-an-1-1=0时,Pn(n,
n2+n
2 ),
|Pn+1Pn+2|=
1+(n+2)2 ,|PnPn+1|=
1+(n+1)2 ,
|Pn+1Pn+2|-|PnPn+1|=
1+(n+2)2 -
1+(n+1)2
=
1+(n+2)2?1?(n+1)2
1+(n+2)2 +
1+(n+1)2
=
2n+3
1+(n+2)2 +
1+(n+1)2 ,
因为
1+(n+2)2 >n+2,
1+(n+1)2 >n+1,
所以0<
2n+3
1+(n+2)2 +
1+(n+1)2 <1,
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.
an2+an
2 ,
当n≥2时an=Sn-Sn-1=
an2+an
2 ?
an?12+an?1
2 ,
整理,得(an+an-1)(an-an-1-1)=0,
又?n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,
an
an?1 =?1,
得an=(?1)n?1,Sn=
1?(?1)n
2 ;
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,Sn=
n2+n
2 .
(II)证明:当an+an-1=0时,Pn((?1)n?1,
1?(?1)n
2 ),
|Pn+1Pn+2|=|PnPn+1|=
5 ,所以|Pn+1Pn+2|-|PnPn+1|=0,
当an-an-1-1=0时,Pn(n,
n2+n
2 ),
|Pn+1Pn+2|=
1+(n+2)2 ,|PnPn+1|=
1+(n+1)2 ,
|Pn+1Pn+2|-|PnPn+1|=
1+(n+2)2 -
1+(n+1)2
=
1+(n+2)2?1?(n+1)2
1+(n+2)2 +
1+(n+1)2
=
2n+3
1+(n+2)2 +
1+(n+1)2 ,
因为
1+(n+2)2 >n+2,
1+(n+1)2 >n+1,
所以0<
2n+3
1+(n+2)2 +
1+(n+1)2 <1,
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.
全部回答
- 1楼网友:孤独入客枕
- 2021-03-24 01:50
an+1+an-1=2an(n≥2),
a(n+1)-an=an-a(n-1)
所以
an为等差数列
a1=f(1),a2=f(2)
f(x)=2x-1
a1=1 a2=3
d=a2-a1=2
所以
an=1+2(n-1)=2n-1
sn=(1+2n-1)n/2=n²
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯