已知x+y=4 xy=1,求x2+y2, x3+y3, x4+y4
答案:4 悬赏:40 手机版
解决时间 2021-03-02 00:03
- 提问者网友:爱了却不能说
- 2021-03-01 15:06
已知x+y=4 xy=1,求x2+y2, x3+y3, x4+y4
最佳答案
- 五星知识达人网友:十鸦
- 2021-03-01 15:54
已知x+y=4 xy=1,
求
x2+y2=(x+y)^2-2xy=14
x3+y3,=(x+y) (x2-xy+y2)=(x+y)[ (x+y)^2-3xy]=4*13=52
x4+y4=(x^2+y^2)^2-2(xy)^2=[(x+y)^2-2xy]^2-2(xy)^2=196-2=194
求
x2+y2=(x+y)^2-2xy=14
x3+y3,=(x+y) (x2-xy+y2)=(x+y)[ (x+y)^2-3xy]=4*13=52
x4+y4=(x^2+y^2)^2-2(xy)^2=[(x+y)^2-2xy]^2-2(xy)^2=196-2=194
全部回答
- 1楼网友:神鬼未生
- 2021-03-01 18:15
x^4y-x²y³+x³y²-xy^4
=xy(x³-xy²+x²y-y³)
=xy[(x³-xy²)+(x²y-y³)]
=xy[x(x²-y²)+y(x²-y²)]
=xy(x²-y²)(x+y)
=xy(x+y)(x-y)(x+y)
=xy(x+y)²(x-y)
希望能帮到你,祝学习进步,记得采纳,谢谢!
- 2楼网友:纵马山川剑自提
- 2021-03-01 17:13
x^2+Y^2=(X+Y)^2-2xy=4^2-2=14:
x^3+y^3=(x+y)(X^2+y^2-xy)=4x(14-1)=52;
X^4+Y^4=(X^2+Y^2)^2-2(XY)^2=14^2-2=194
- 3楼网友:枭雄戏美人
- 2021-03-01 17:06
x^2+y^2=(x+y)^2-2xy=16-2=14
x^3+y^3=(x+y)(x^2-xy+y^2)=4*(14-1)=52
x^4+y^4=(x^2+y^2)^2-2x^2y^2=196-2=194
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯