永发信息网

浮点型数据在内存中实际的存放形式(储存形式)

答案:4  悬赏:80  手机版
解决时间 2021-02-09 22:55
浮点型数据在内存中实际的存放形式(储存形式)
1.要说的通俗点,仔细点!
2.实际的储存形式(二进制补码);
3.最后用精炼的语言表达;
注意,"实际",可用十进制示意,但最后必须以二进制表示
4.对于2说法是不对的,在此纠正:实际的储存方式(规范化的二进制指数形式,指数最终是以其补码二进制形式存放在指数位)
最佳答案
浮点数是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法。
浮点计算是指浮点数参与的运算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
一个浮点数a由两个数m和e来表示:a = m × b^e。在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。如果m的第一位是非0整数,m称作规格化的。有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。e是指数。
这种设计可以在某个固定长度的存储空间内表示定点数无法表示的更大范围的数。
例如,一个指数范围为±4的4位十进制浮点数可以用来表示43210,4.321或0.0004321,但是没有足够的精度来表示432.123和43212.3(必须近似为432.1和43210)。当然,实际使用的位数通常远大于4。
此外,浮点数表示法通常还包括一些特别的数值:+∞和−∞(正负无穷大)以及NaN('Not a Number')。无穷大用于数太大而无法表示的时候,NaN则指示非法操作或者无法定义的结果。
众所周知,计算机中的所有数据都是以二进制表示的,浮点数也不例外。然而浮点数的二进制表示法却不像定点数那么简单了。
先澄清一个概念,浮点数并不一定等于小数,定点数也并不一定就是整数。所谓浮点数就是小数点在逻辑上是不固定的,而定点数只能表示小数点固定的数值,具用浮点数或定点数表示某哪一种数要看用户赋予了这个数的意义是什么。
C++中的浮点数有6种,分别是:
float:单精度,32位
unsigned float:单精度无符号,32位
double:双精度,64位
unsigned double:双精度无符号,64位
long double:高双精度,80位
unsigned long double:高双精度无符号,80位(嚯,应该是C++中最长的内置类型了吧!)
然而不同的编译器对它们的支持也略有不同,据我所知,很多编译器都没有按照IEEE规定的标准80位支持后两种浮点数的,大多数编译器将它们视为double,或许还有极个别的编译器将它们视为128位?!对于128位的long double我也仅是听说过,没有求证,哪位高人知道这一细节烦劳告知。
下面我仅以float(带符号,单精度,32位)类型的浮点数说明C++中的浮点数是如何在内存中表示的。先讲一下基础知识,纯小数的二进制表示。(纯小数就是没有整数部分的小数,讲给小学没好好学的人)
纯小数要想用二进制表示,必须先进行规格化,即化为 1.xxxxx * ( 2 ^ n ) 的形式(“^”代表乘方,2 ^ n表示2的n次方)。对于一个纯小数D,求n的公式如下:
n = 1 + log2(D); // 纯小数求得的n必为负数
再用 D / ( 2 ^ n ) 就可以得到规格化后的小数了。接下来就是十进制到二进制的转化问题,为了更好的理解,先来看一下10进制的纯小数是怎么表示的,假设有纯小数D,它小数点后的每一位数字按顺序形成一个集合:
{k1, k2, k3, ... , kn}
那么D又可以这样表示:
D = k1 / (10 ^ 1 ) + k2 / (10 ^ 2 ) + k3 / (10 ^ 3 ) + ... + kn / (10 ^ n )
推广到二进制中,纯小数的表示法即为:
D = b1 / (2 ^ 1 ) + b2 / (2 ^ 2 ) + b3 / (2 ^ 3 ) + ... + bn / (2 ^ n )
现在问题就是怎样求得b1, b2, b3,……,bn。算法描述起来比较复杂,还是用数字来说话吧。声明一下,1 / ( 2 ^ n )这个数比较特殊,我称之为位阶值。
例如0.456,第1位,0.456小于位阶值0.5故为0;第2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;第3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;第4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;第5位0.0185小于0.03125……
最后把计算得到的足够多的1和0按位顺序组合起来,就得到了一个比较精确的用二进制表示的纯小数了,同时精度问题也就由此产生,许多数都是无法在有限的n内完全精确的表示出来的,我们只能利用更大的n值来更精确的表示这个数,这就是为什么在许多领域,程序员都更喜欢用double而不是float。
float的内存结构,我用一个带位域的结构体描述如下:
struct MYFLOAT
{
bool bSign : 1; // 符号,表示正负,1位
char cExponent : 8; // 指数,8位
unsigned long ulMantissa : 23; // 尾数,23位
};
符号就不用多说了,1表示负,0表示正
指数是以2为底的,范围是 -128 到 127,实际数据中的指数是原始指数加上127得到的,如果超过了127,则从-128开始计,其行为和X86架构的CPU处理加减法的溢出是一样的。比如:127 + 2 = -127;127 - 2 = 127
尾数都省去了第1位的1,所以在还原时要先在第一位加上1。它可能包含整数和纯小数两部分,也可能只包含其中一部分,视数字大小而定。对于带有整数部分的浮点数,其整数的表示法有两种,当整数大于十进制的16777215时使用的是科学计数法,如果小于或等于则直接采用一般的二进制表示法。科学计数法和小数的表示法是一样的。
小数部分则是直接使用科学计数法,但形式不是X * ( 10 ^ n ),而是X * ( 2 ^ n )。拆开来看。
众所周知,计算机中的所有数据都是以二进制表示的,浮点数也不例外。然而浮点数的二进制表示法却不像定点数那么简单了。
先澄清一个概念,浮点数并不一定等于小数,定点数也并不一定就是整数。所谓浮点数就是小数点在逻辑上是不固定的,而定点数只能表示小数点固定的数值,具用浮点数或定点数表示某哪一种数要看用户赋予了这个数的意义是什么。
C++中的浮点数有6种,分别是:
float:单精度,32位
unsigned float:单精度无符号,32位
double:双精度,64位
unsigned double:双精度无符号,64位
long double:高双精度,80位
unsigned long double:高双精度无符号,80位(嚯,应该是C++中最长的内置类型了吧!)
然而不同的编译器对它们的支持也略有不同,据我所知,很多编译器都没有按照IEEE规定的标准80位支持后两种浮点数的,大多数编译器将它们视为double,或许还有极个别的编译器将它们视为128位?!对于128位的long double我也仅是听说过,没有求证,哪位高人知道这一细节烦劳告知。
下面我仅以float(带符号,单精度,32位)类型的浮点数说明C++中的浮点数是如何在内存中表示的。先讲一下基础知识,纯小数的二进制表示。(纯小数就是没有整数部分的小数,讲给小学没好好学的人)
纯小数要想用二进制表示,必须先进行规格化,即化为 1.xxxxx * ( 2 ^ n ) 的形式(“^”代表乘方,2 ^ n表示2的n次方)。对于一个纯小数D,求n的公式如下:
n = 1 + log2(D); // 纯小数求得的n必为负数
再用 D / ( 2 ^ n ) 就可以得到规格化后的小数了。接下来就是十进制到二进制的转化问题,为了更好的理解,先来看一下10进制的纯小数是怎么表示的,假设有纯小数D,它小数点后的每一位数字按顺序形成一个集合:
{k1, k2, k3, ... , kn}
那么D又可以这样表示:
D = k1 / (10 ^ 1 ) + k2 / (10 ^ 2 ) + k3 / (10 ^ 3 ) + ... + kn / (10 ^ n )
推广到二进制中,纯小数的表示法即为:
D = b1 / (2 ^ 1 ) + b2 / (2 ^ 2 ) + b3 / (2 ^ 3 ) + ... + bn / (2 ^ n )
现在问题就是怎样求得b1, b2, b3,……,bn。算法描述起来比较复杂,还是用数字来说话吧。声明一下,1 / ( 2 ^ n )这个数比较特殊,我称之为位阶值。
例如0.456,第1位,0.456小于位阶值0.5故为0;第2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;第3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;第4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;第5位0.0185小于0.03125……
最后把计算得到的足够多的1和0按位顺序组合起来,就得到了一个比较精确的用二进制表示的纯小数了,同时精度问题也就由此产生,许多数都是无法在有限的n内完全精确的表示出来的,我们只能利用更大的n值来更精确的表示这个数,这就是为什么在许多领域,程序员都更喜欢用double而不是float。
float的内存结构,我用一个带位域的结构体描述如下:
struct MYFLOAT
{
bool bSign : 1; // 符号,表示正负,1位
char cExponent : 8; // 指数,8位
unsigned long ulMantissa : 23; // 尾数,23位
};
符号就不用多说了,1表示负,0表示正
指数是以2为底的,范围是 -128 到 127,实际数据中的指数是原始指数加上127得到的,如果超过了127,则从-128开始计,其行为和X86架构的CPU处理加减法的溢出是一样的。比如:127 + 2 = -127;127 - 2 = 127
尾数都省去了第1位的1,所以在还原时要先在第一位加上1。它可能包含整数和纯小数两部分,也可能只包含其中一部分,视数字大小而定。对于带有整数部分的浮点数,其整数的表示法有两种,当整数大于十进制的16777215时使用的是科学计数法,如果小于或等于则直接采用一般的二进制表示法。科学计数法和小数的表示法是一样的。
小数部分则是直接使用科学计数法,但形式不是X * ( 10 ^ n ),而是X * ( 2 ^ n )。拆开来看。
0 00000000 0000000000000000000000
符号位 指数位 尾数位
全部回答
这个建议你去看一下计算机组成原理的书,不同类型的机器不同操作系统浮点数存储的刑事是不一样的。
浮点型数据在内存中存储不是按补码形式,是按阶码的方式存储,所以虽然int和float都是占用了4个字节,如果开始存的是int型数据,比如是个25,那么用浮点的方式输出就不是25.0,也许就变的面目全非。 你可以用共用体的方式验证一下。在公用体中定义一个整形成员变量和一个浮点型成员变量,给整形赋值25,输出浮点成员变量,你就知道了。
单精度浮点数:1位符号位,8位指数位,23位有效数字。 双精度浮点数:1位符号位,11位指数位,52位有效数字。 计算规则:数字 = 有效数字*2^指数*符号
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
北辰教育(蚌埠蚌山区)地址好找么,我有些事要
艾尚网咖地址在什么地方,想过去办事
(3分)一个自然生态系统中,肉食性动物总比
现在淘宝怎么没有彩票了?
格林童画美术教育(蚌埠蚌山区)怎么去啊,我要
凤凰金融的风控做得怎样?
没拆线呢可以干活吗?
请问昆明市内有哪些学校(单位)是需要舞蹈老
什么牌子的三明治火腿肠好吃
北京普西尼暖通科技有限公司驻滨州办事处地址
环球雅思学校(工农路店)地址在什么地方,我要
武汉 矮子馅饼
下列叙述中,属于生物因素对生物影响的是A.
湖南农商银行手机银行如何下载
莱慕客尚品扒房这个地址在什么地方,我要处理
推荐资讯
115X43一15X43递
明清时期,工商业发展的表现有:①私营工商业
在上海当老师一定要托关系吗
对生物反馈技术有重要贡献的人物有()。A.沃尔
用过ZA姬芮真皙美白隔离霜的进!
我在五星电器预定了手机、付了订金200,手机
怎样降低采购成本和价格
【光在空气中的传播速度】光信号在光纤中传输
鹭江地铁怎样到珠江新城
家电行业的内销都不管住宿吗?美的制冷家电中
那坡县全民健身活动中心地址在哪,我要去那里
销售少量未经批准的进口药不作犯罪处理,可以
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?