解答题设集合A={x|x2+(b+2)x+b+1=0,b∈R},求集合A中所有元素之和
答案:2 悬赏:40 手机版
解决时间 2021-04-08 04:12
- 提问者网友:谁的错
- 2021-04-07 19:14
解答题
设集合A={x|x2+(b+2)x+b+1=0,b∈R},求集合A中所有元素之和S.
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-04-07 20:06
解:当b=0时,方程x2+2x+1=0有两个相等的实根
∴集合A={x|x2+2x+1=0}={-1},
此时,S=-1;
当?b≠0时,方程x2+2x+1=0有两个不等的实根x1,x2,
∴集合A={x|x2+2x+1=0}={x1,x2}
由韦达定理可得x1+x2=-(b+2)
∴S=-(b+2).解析分析:由于方程x2+(b+2)x+b+1=0为二次方程,当b=0时,方程有两个相等的实根,此时集合A为单元集,求出方程的根后,即可得到S值;当b≠0时,方程x2+2x+1=0有两个不等的实根x1,x2,此时集合A为两元集,根据韦达定理,即可求出S的值.点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,集合元素的互异性,解答过程中,易忽略集合元素的互异性,忽略b=0时,方程有两个相等的实根,此时集合A为单元集,而错解为S=-(b+2).
∴集合A={x|x2+2x+1=0}={-1},
此时,S=-1;
当?b≠0时,方程x2+2x+1=0有两个不等的实根x1,x2,
∴集合A={x|x2+2x+1=0}={x1,x2}
由韦达定理可得x1+x2=-(b+2)
∴S=-(b+2).解析分析:由于方程x2+(b+2)x+b+1=0为二次方程,当b=0时,方程有两个相等的实根,此时集合A为单元集,求出方程的根后,即可得到S值;当b≠0时,方程x2+2x+1=0有两个不等的实根x1,x2,此时集合A为两元集,根据韦达定理,即可求出S的值.点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,集合元素的互异性,解答过程中,易忽略集合元素的互异性,忽略b=0时,方程有两个相等的实根,此时集合A为单元集,而错解为S=-(b+2).
全部回答
- 1楼网友:零点过十分
- 2021-04-07 20:44
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯