怎么证1/2+1/4+1/8+…+1/2的n次幂<1啊!我狂晕!
答案:3 悬赏:10 手机版
解决时间 2021-08-24 10:52
- 提问者网友:聂風
- 2021-08-23 19:16
怎么证1/2+1/4+1/8+…+1/2的n次幂<1啊!我狂晕!
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-08-23 19:26
题中的算式是一个等比数列求和。首项1/2,公比为1/2。
Sn=a1(1-q^n)/(1-q)
1/2 * (1-1/2^n)/(1-1/2)
=1-1/2^n<1
得证。
全部回答
- 1楼网友:何以畏孤独
- 2021-08-23 21:36
lz写错题了吧
不说别的,仅仅是1/2+1/2+1/4+1/8>1 那N次幂肯定>1啊,lz再看看题
- 2楼网友:白昼之月
- 2021-08-23 21:05
是高中的,直接用等比数列,是除中生,可以先猜想此式的值为1-1/2的n次方(事实也是).再用数学归纳法证明过程如下:n=1时1/2=1-1/2成立,n>=2时,假设n=k时成立,那么n=k+1时原式等于1-1/2k次方+1/2k+1也成立
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯