设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?
设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?
答案:1 悬赏:40 手机版
解决时间 2021-07-27 03:57
- 提问者网友:辞取
- 2021-07-26 04:39
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-07-26 05:14
(1) 因为 r(A)=2,所以 AX=0 的基础解系含 5-r(A)=3 个解向量
所以 AX=0 的3个线性无关的解都是其基础解系
所以 (2),(3) 正确.(4)线性相关:(a1-a2)+(a2-a3)+(a3-a1)=0
(2) 因为 R(A)=n-1,所以 AX=0 的基础解系含 n-r(A)=1 个解向量
所以 AX=0 的非零的解都是其基础解系
由 a1≠a2 知 a1-a2 是AX=0 的非零解
所以 (4) 正确.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯